高中物理原子物理学知识点_高考物理原子物理知识点
1.物理高考涉及的范围?
2.高考物理难吗?
3.高中物理学什么
4.高考物理的考纲
5.高考物理交变电流公式归纳
6.高中物理有关名人的知识点
高中物理学史
一、力学
1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);
2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-设-数学推理的方法,详细研究了抛体运动。
6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
7、17世纪,德国天文学家开普勒提出开普勒三大定律;
8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;
9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;
俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。
11、1957年10月,苏联发射第一颗人造地球卫星;
1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。
二、电磁学
12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。
13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。
18世纪中叶,美国人富兰克林提出了正、负电荷的概念。
1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。
14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。
15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。
16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。
17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。
18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。
19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。
20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。
21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。
22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。
23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。
(最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)
24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。
25、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。
26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。
三、热学
27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。
28、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。
29、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限。
30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。
21、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值。
四年后,帕斯卡的研究表明,大气压随高度增加而减小。
1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。
四、波动学
22、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。
23、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。
24、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。
五、光学
25、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。
26、1801年,英国物理学家托马斯?杨成功地观察到了光的干涉现象。
27、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。
28、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。
29、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。
30、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。
31、1800年,英国物理学家赫歇耳发现红外线;
1801年,德国物理学家里特发现紫外线;
1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。
32、激光——被誉为20世纪的“世纪之光”。
六、波粒二象性
33、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界;
受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。
34、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。
35、1913年,丹麦物理学家玻尔提出了自己的原子结构说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。
36、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。
37、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;
1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。
七、相对论
38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),
②热辐射实验——量子论(微观世界);
39、19世纪和20世纪之交,物理学的三现:X射线的发现,电子的发现,放射性的发现。
40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:
①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;
②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。
狭义相对论的其他结论:
①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀)
②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。
③相对论质量:物体运动时的质量大于静止时的质量。
41、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:E=mc2。
八、原子物理学
42、1858年,德国科学家普吕克尔发现了一种奇妙的射线——阴极射线(高速运动的电子流)。
43、18年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。说明原子可分,有复杂内部结构,并提出原子的枣糕模型。1906年,获得诺贝尔物理学奖。
44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。
45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。
天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。
46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,
并预言原子核内还有另一种粒子——中子。
47、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。
48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。
49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。
50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。
51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。
52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。
53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;
轻子-不参与强相互作用的粒子,如:电子、中微子;
物理高考涉及的范围?
今天物理高考难度不大。
资料扩展:
物理学(physics),是研究物质最一般的运动规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。
物理学起始于伽利略和牛顿的年代,它已经成为一门有众多分支的基础科学。物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。物理学充分用数学作为自己的工作语言,它是当今最精密的一门自然科学学科。
原子、分子和光学物理研究原子尺寸或几个原子结构范围内,物质-物质和光-物质的相互作用。这三个领域是密切相关的。因为它们使用类似的方法和有关的能量标度。它们都包括经典和量子的处理方法;从微观的角度处理问题。
原子物理处理原子的壳层,集中在原子和离子的量子控制;冷却和诱捕;低温碰撞动力学;准确测量基本常数;电子在结构动力学方面的集体效应。原子物理受核的影晌。但如核分裂、核合成等核内部现象则属高能物理。
分子物理集中在多原子结构以及它们,内外部和物质及光的相互作用,这里的光学物理只研究光的基本特性及光与物质在微观领域的相互作用。
粒子物理研究物质和能量的基本组元及它们间的相互作用;也可称为高能物理。因为许多基本粒子在自然界原本并不存在,只在粒子加速器中与其它粒子高能碰撞下才出现。
据基本粒子的相互作用标准模型描述,有12种已知物质的基本粒子模型(夸克和轻粒子)。它们通过强、弱和电磁基本力相互作用。标准模型还预言一种希格斯-玻色粒子存在。现正寻找中。
高考物理难吗?
考纲变化
2007年的物理考试大纲对学生的能力要求、考试的内容范围、题型示例均没有做实质性的变化,说明2007年的高考将继续保持稳定,这对于学生是一个好消息。
试题仍以中档题为主,内容仍以力学、电磁学等主干知识为主,热学、光学、原子物理、机械波等以选择题的形式出现,试题突出理论联系生产、生活实际和现代科学技术。
通过对2007年考试大纲中题型示例的分析,Ⅰ卷的题目的数量和难度与去年持平,Ⅱ卷的难度有所降低。因此一定要掌握基础知识。
备考建议
高中物理涉及到力、热、光、电和原子物理等方面的知识,虽然内容多,但知识前后联系紧密,规律性强,只要复习方法正确,可以在最后复习阶段取得良好的效果。
●了解考查的知识范围
学习《考试大纲》,了解考查的知识范围,可以说,凡是考试说明中未列入的知识点和实验,不会出现在考试题中。考生在阅读考试说明时,一定要仔细领会其中含义,准确把握重点知识的深浅度。
高考试题中易、中、难题的大致比例为3∶5∶2,很少出现超过考试说明的知识和能力要求。因此,不提倡花许多时间去解偏题难题。
●掌握基础知识,形成知识网络
全面掌握基础知识,不是死记硬背概念和公式,而是要在透彻理解的基础上去记忆。对物理概念应该从定义式及变形式、物理意义、单位、矢量性及相关性等方面进行讨论;对定理或定律的理解,则应从其实验基础、基本内容、公式形式、物理实质、适用条件等作全面的分析。
复习时还要抓住重点,了解知识间的纵横联系,形成知识网络。如复习力学知识时,要了解受力分析和运动学是整个力学的基础,而运动定律则将原因(力)和效果(加速度)联系起来,为解决力学问题提供了完整的方法;曲线运动和振动部分属于运动定律的应用;动量和机械能,则从空间的观念开辟了解决力学问题的另外两条途径,提供了求解系统问题、守恒问题等的更为简便的方法。
有了这样的分析,整个力学知识就不再是孤立和零碎的,而是为了研究运动和力的关系的有机整体。
●合理训练,避免题海战术
有些学生埋头于题海中,热衷于解题方法和技巧,放松了对基本概念和基本规律的理解,在看到一道试题时,不是首先对试题中给出的物理情境、物理条件和所涉及的物理过程进行认真分析,而是急于去寻找它与贮存在自己头脑中的哪道题相似,找到相似的题后,便把该题的解法套上去。
这种把物理学习异化成解题训练的状况,对物理复习极其有害。学习物理不是为了解题,决不能把做习题作为物理复习的核心。
做习题的目的,一是检查对物理概念和物理规律是否真的透彻理解了,能否在实际问题中灵活地运用它们;二是通过做习题,锻炼并提高理解能力、推理能力、分析综合能力、运用数学解决物理问题的能力等等。
所以,每做一道习题,都要力求对物理概念和规律的理解上有所加深,在能力上有所提高。每做完一道题后应总结一下,看看通过解这道题,对物理概念和规律的理解上有哪些新的体会。
在做习题的过程中,要独立思考、独立完成,不能机械地套用熟悉的题目类型。练习贵在精而不在多,练习完成后不要急于对答案,想一想题意是否理解正确,是不是有其他的解题方法,这道题与某道题或某些题相同点在什么地方,不同点在什么地方,对所做的题适当地归类,将会起到举一反三的作用。
●重视物理实验
近年高考试验试题中考的原理,都是中学物理中最普遍、最常用的原理,但问题情境是新的,使得有一些同学一看就慌了,不知如何入手。所以在复习中,对物理实验应加以足够的重视。
设计和完成实验的能力,也是高考能力要求的一个重要组成部分。每年物理高考试题中,实验题约占14%,从每年全国物理高考的实践来看,实验题的得分率一般都不高。其实实验题并不难,它应该是考试容易得分的题目。
从考生的答卷看,有许多考生似乎没有经过实验的训练。近年来高考物理试卷对实验的考查,重点放在考查对实验的思想、方法和原理的理解和实验仪器的使用上。所以实验复习不能简单地背诵条款,要落实到动脑动手上。
今年考纲中的学生实验中,有1个练习(使用打点计时器)、3个验证(平行四边形法则,机械能守恒,动量守恒)、7个定量测定、8个规律研究。
对这些实验要理解透彻,弄懂其实验目的和实验原理,熟悉实验器材,掌握实验方法与步骤;能准确记录数据,并能正确处理实验数据,以便得出正确结论。
对大纲中要求掌握的13种仪器,一定要实际操作,熟练掌握。重新观察课本实验,通过新视角,研究物理实验培养创新能力。
●冲刺阶段,抓核心知识
考生冲刺阶段的复习,一定要围绕物理中最核心的知识。今年考试大纲里的参考题型中物理就是12道题,具体构成为:8道选择题,1道实验题,3道计算题。12道题不可能包容高中物理的全部内容,所以高考就会围绕高中物理最核心、最主要的知识进行考查。
研究近几年的教学大纲和考试大纲,高中物理中核心知识点有以下内容:
受力分析、物体的平衡;匀变速直线运动、牛顿三大定律;平抛运动、圆周运动、人造卫星、万有引力;振动和波;动量、动量守恒;动能、动能定理、机械能守恒;电场力的功与电势能的改变;带电粒子在电场中的加(减)速和偏转;欧姆定律;安培力、洛仑兹力及带电粒子在磁场中的圆周运动;电磁感应定律;反射定律、折射定律、折射率;各种射线的特征及应用;光电效应;核能、爱因斯坦质能方程、核反应方程;物理实验。
●研究评分标准,掌握应试技巧
研究评分标准可以提高解题的规范性,增加得分点,考出更高分数。具体做法是:
(1)确定研究对象,定义物理量,如m、S、t、V、a、P、E、等。
(2)物理过程、物理状态的分析和论证,特别是隐含的物理过程的分析、重要条件的叙述和确定(如平衡、加速、相遇等)、画图(物理过程的示意图,受力图,轨迹图等)。
(3)每一过程依据定理、定律列方程(最重要),由每一个物理知识列一个方程,不要几个物理知识列成一个综合式。
(4)计算,得到正确的结果(有效数字、单位、方向等)。
高中物理学什么
高考物理有一定的难度
高考物理难吗?这是一个许多学生都会关心的问题。高考物理作为一门重要的学科,涉及到多个方面的知识,包括力学、电磁学、光学、热学、量子物理、原子物理、物理实验和物理应用等。本文将对这些方面进行详细的介绍,以便读者更好地了解高考物理的难度和应对方法。
高考物理中的力学考试主要考察学生对牛顿力学的基本概念、运动规律和解题方法的掌握。常见题型包括选择题、填空题、计算题等。在解题过程中,学生需要掌握受力分析、运动学、动力学等知识点,并能灵活运用这些知识解决实际问题。
高考物理中的电磁学考试主要考察学生对电磁学的基本概念、电磁场理论和电磁感应现象的掌握。常见题型包括选择题、填空题、计算题等。在解题过程中,学生需要掌握电荷、电场、磁场、电磁感应等知识点,并能灵活运用这些知识解决实际问题。
高考物理中的光学考试主要考察学生对光学的基本概念、光的传播规律和光学成像的掌握。常见题型包括选择题、填空题、计算题等。在解题过程中,学生需要掌握光的反射、折射、干涉、衍射等知识点,并能灵活运用这些知识解决实际问题。
高考物理中的原子物理考试主要考察学生对原子结构和原子核物理的掌握。常见题型包括选择题、填空题、计算题等。在解题过程中,学生需要掌握原子的能级结构、辐射与吸收、原子核的稳定性等内容,并能灵活运用这些知识解决实际问题。
高考物理中的实验考试主要考察学生的实验技能和实验数据分析能力。常见题型包括实验设计、实验操作、实验数据分析等。在实验过程中,学生需要掌握实验原理、实验操作方法、实验数据分析方法等内容,并能根据实验结果进行合理的解释。
高考物理作为一门综合性的学科,涉及到的知识点广泛且复杂。为了应对高考物理考试,学生需要全面掌握各个方面的知识,包括力学、电磁学、光学、热学、量子物理、原子物理、物理实验和物理应用等。
高考物理的考纲
高中物理一共七本书,分别是:必修一、必修二、选修3-1、选修3-2、选修3-3、选修3-4、选修3-5.
必修一,主要讲解匀变速直线运动、力与运动、牛顿运动定律等相关知识。本部分是高中物理的基础,运动的相关计算、受力分析与力的分解、牛顿运动定律的应用,在高考中这部分重点考察的是关于力学实验的填空题,分值约6分。
必修二,主要学习曲线运动、万有引力与天体运行、机械能守恒以及功能的计算。本部分是高考的重要考点之一,其中曲线运动的平抛运动和圆周运动的知识点在万有引力、带电粒子在电电场和磁场中的运动都有联系,应重点理解记忆。万有引力与天体运行,高考中出选择题的概率非常大,大多考察线速度V、角速度w、周期T的比值和计算,机械能守恒定律、动能定理是高考物理三大计算题之一,考察的概率非常大,同时还易和动量定理、动量守恒定律结合,难度可大可小。
选修3-1,主要学习静电场、恒定电流以及磁场的相关知识。其中静电场的知识点在高考中有一定的概率会考到选择题,主要考察电场力的叠加、电势和电势能的变化等问题、恒定电流的考察主要是动态电路的分析(程序法、串反并同)以及电学实验,其中电学实验是重点,是必考题,分值在10分左右(主要考测电阻率、测小灯泡伏安特性曲线、测电源电动势和内阻、电表的改装)应重点复习。磁场主要掌握磁场的基本知识(磁场线的分布、场强的计算等)以及带电粒子在磁场中的运动(受力分析、画出轨迹、找圆心、求几何半径,联立求解)在高考中,带电粒子在复合场中的运动是三大计算题之一,此类题目题型较新,考察学生的综合分析能力。
选修3-2,主要学习电磁感应定律、交变电以及传感器的相关知识。本部分的重点是电磁感应定律(三定则一定律、导体棒切割磁感线运动)其中的导体棒切割磁感线运动是三大计算题之一,考虑此类问题应时刻想着功能关系。交变电的重点是变压器以及远距离输电。传感器的内容了解即可。
选修3-3,主要学习分子热运动、理想气体状态方程、物态变化以及热力学定律。山东省济宁市3-3一直作为选考内容,考试试题15分,其中5分的多选,主要考察对基本概念的理解,判断正误;10分的计算题,主要考查理想气体状态方程的运用,题型多为活塞和U型管。
选修3-4,主要学习简谐运动、机械波、光的衍射和干涉以及电磁波等,本册内容和选修3-3作为选做内容,分值15分。
选修3-5,现在已经作为必考内容,主要学习动量定理、波粒二象性、原子结构、核反应等相关知识,在高考中多以选择题的形式出现,易考点:物理学史、光电效应方程、氢原子的能级跃迁、核反应方程式的书写等内容。难度相对不大,多是需要记忆的内容。
高考理综物理试题,选择题8题(5+3)、填空题两题(力学实验、电学实验)、计算题两题(动力学、机械能、带电粒子、导体棒切割磁感线四选二)、选做题两题(选修3-3、选修3-4)满分110分。
高考物理交变电流公式归纳
2011年高考物理考试大纲解读 及复习建议
第一部分:2011年高考物理考试大纲简介
一、考试范围与要求
要考查的物理知识包括力学、热学、电磁学、光学、原子物理学、原子核物理学等部分。鉴于大纲版考试大纲四年未作任何变化,我们认为这一方面说明现行大纲对高中物理学科知识的要求基本合理,也体现了考试中心在课改过渡时期大纲版地区的高考以平稳过渡的为主的思想原则。尽管考试大纲未变,考试模式和出题的套路不变,但体现新课程改革的理念还是在不断渗透,试题求新求变的步伐没有停止。
二、个人预测:(仅供参考)
高考命题的“五不”原则:不泄密、不出错、不超纲、不创新、不出彩 。
(1)继续突出时代特点,反映时代特征,突出一个“稳”字;
题型、题量、试卷结构基本不变; 突出主干知识,兼顾非重点知识这一方向不变;
难度系数基本不变;
(2)加大创新力度(强调新课程理念)
① 情景设置: ②信息提供的方式 :
三、新课程高考特点:
新高考命题严格依据国家课程标准和《普通高等学校招生全国统一考试大纲》的要求,不超越各学科课程标准,不超越考试大纲,力求符合中学课程改革的目标要求。既有利于中学推进素质教育,减轻学生负担,又有利于高等学校选拔人才。
四、高考大纲对知识点的要求
考试大纲中只给出两个层次:“I级要求”与“Il级要求”。I级为基本要求,包含“了解”、“知道”,能将知识直接加以应用(注意:I级要求不等于没有计算);Il级为较高要求,包含“理解”、“掌握”,能在实际问题的分析、综合、推理和判断等过程中加以运用。
五、试题设计
试题设计将力求突出基础性,灵活性和开放性,密切联系学生的生活经验和社会实际,既注重考查学生的基础知识和基本能力,又注重考查学生分析问题和解决问题的能力。试题的解答能反映出学生的知识与技能方法,过程与方法,情感态度与价值观。
1. 知识方面:突出主干, 稳中有新,稳中有变.
2. 能力方面:坚持能力立意,重视考查运用物理知识和科学探究方法解决实际问题的能力,以体现考生思维广度、 深度及灵活度.
3. 实验方面:注重考查学生的运用仪器的能力、实验操作能力和创新设计能力
4. 体现“过程与方法”为核心的组合型试题成为计算题的新题型
5. 重视理论联系实际,考查考生的建模能力
6. 试题难度设计合理,有较好的区分度
六、考题呈现和复习要求
考题分析:直线运动
(09年江苏物理)7.如图所示,以匀速行驶的汽车即将通过路口,绿灯还有2s将熄灭,此时汽车距离停车线18m。该车加速时最大加速度大小5m/s2为,减速时最大加速度大小为。此路段允许行驶的最大速度为,下列说法中正确的有
A.如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线
B.如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速
C.如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线
D.如果距停车线处减速,汽车能停在停车线处
复习建议:
1. 侧重基本概念和规律的理解。
2. 新课标要求学生具备一定的科学素养。
3. 培养学生了解匀变速直线运动的实验研究。
4. 习题教学中要训练学生具备一定应用数学的能力。
相互作用与牛顿运动规律
(09年安徽卷)22.(14分)在2008年北京残奥会开幕式上,运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚忍不拔的意志和自强不息的精神。为了探究上升过程中运动员与绳索和吊椅间的作用,可将过程简化。一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅,另一端被坐在吊椅上的运动员拉住,如图所示。设运动员的质量为65kg,吊椅的质量为15kg,不计定滑轮与绳子间的摩擦。重力加速度取。当运动员与吊椅一起正以加速度上升时,试求
(1)运动员竖直向下拉绳的力;
(2)运动员对吊椅的压力。
复习建议:
1. 培养学生基本解题思路。
2. 牛顿运动定律是力学的基本规律、力学的核心知识。
曲线运动
09年广东卷)17.(1)为了清理堵塞河道的冰凌,空军实施了投弹爆破,飞机在河道上空高H处以速度v0水平匀速飞行,投掷下并击中目标。求刚脱离飞机到击中目标所飞行的水平距离及击中目标时的速度大小。(不计空气阻力)
(2)如图17所示,一个竖直放置的圆锥筒可绕其中心OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半。内壁上有一质量为m的小物块。求
①当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;
②当物块在A点随筒做匀速转动,且其受到的摩擦力为零时,筒转动的角速度。
复习建议:
1. 帮助学生建立起合运动与分运动的概念。
2. 渗透曲线运动的研究方法。
3. 重点复习好两种运动。
七、高考物理大纲复习重点
1.注重双基和学科主干知识
基本概念、基本规律仍是新课程高考考查的重点内容,主要考查考生在理解的基础上掌握基本概念、基本规律和基本方法,并要求深人理解概念和规律之问的内在联系。学生往往是概念、定义都知道,但一用就出错。因此,第一轮复习中,就应认真抓好双基的复习,不留盲点。
2.重视理论联系实际,提高学生分析问题、解决问题能力的培养
新课程下的高考物理试题,都注重与生产、生活密切联系,关注现代科学技术发展。近年来高考物理试题的鲜明特征之一,就是出现大量的理论联系实际的试题,而学生的失分恰恰就集中在这一方面。复习中就应注重培养学生,通过认真审题弄清题目条件,在对题给物理对象、物理过程分析的基础上,创设物理情景(特别强调画图),建立物理模型,然后再根据所学知识进行解答。对此,复习过程中:一是要扎实复习基础知识,让学生模仿各种物理模型的建立过程;二是要注重培养学生良好的解题习惯,即认真审题、明确对象、运动分析、受力分析、排除干扰、抓住重点、忽略次要因素,从实际情境中抽象出物理模型,再从物
理想模型中分析其中的物理规律,明确各物理量的变化及相互关系,最后根据合适的规律建立数学关系式求解;三是要引导学生关注物理与生活、生产、科技的联系,引导他们理论联系实际,学会用物理知识理解和解释有关问题。因此,复习课仍要使用多媒体开展教学,仍需要携带必要的教具上课。
3.提取信息的能力
若从“信息论”的角度来看,物理解题过程实际上就是所谓的“信息的提取与鉴别”、“信息的分析与重组”、“信息的加工与处理”等阶段的组合,而在这些针对“信息”所实施的各种解题操作中,高考试卷及试题的命制格外注重的是“信息的提取”,因为这毕竟是物理解题过程中的第一个步骤。高考物理卷考生感到难是因为题目取材新颖,阅读速度慢,时间严重不足!这与平时的学习关系很大。也与平时的训练关系很大,由于传统的填压式教学,教学中把学生阅读这个环节压缩,无论是课本学习材料还是例题讲解,在阅读课本、和阅读题目上省时间,最终造成考生高考的如此被动。
4.加强计算推理、论证表述、分析综合能力的培养
对推理能力的考查是贯穿在高考各种题型中,从不同的角度、不同的层次,通过不同的题型、不同的情景设置进行考查推理的逻辑性和严密性;对论证表述则重在考查能否准确地、简明地把推理过程表达出来.以鉴别表述能力的高低。复习中要克服学生思维推理过程不合乎逻辑,对受力分析、运动过程分析不予重视,不会用物理语言表述物理过程或物理规律等现象。
八、重视实验与探究能力的培养
考试大纲的说明》强调:“尽管高考是以纸笔测验的方式考查学生的实验能力,但物理高考中的实验试题非常注意尽可能区分哪些考生认真做过‘知识内容表’中的实验,哪些考生没有认真做过这些实验。能独立完成表中注明“实验、探究”的内容,明确实验目的,理解实验原理和方法,控制实验条件.会使用实验仪器,会观察、分析实验现象,会记录、处理实验数据,并得出结论,对结论进行一定的分析和评价.能在实验中,发现问题、提出问题,对解决问题的方式和问题的答案提出设;能制定解决方案,对实验结果进行预测.能运用已学过的物理理论、实验方法和实验仪器去解决问题,包括简单的设计性实验.
1. 2009年高考实验题特点
纵观2009年理科综合全国卷Ⅱ物理试题,体现了物理的学科特点,严谨而又新意十足,特别是实验题的设计让人耳目一新,设计经典而又不落俗套,考查学生是否具有扎实的实验技能,是否具备开阔的专业视野,是否具有不拘一格的创新精神,确实让人感受到了新课程改革前进的有力步伐 。
2. 试题特点
(1)实验的设计彻底突破了往年修修补补的传统
(2)实验知识的考查仍然立足教材,但立意跳出了限制
(3)实验命题来源于生活,立足实际
(4)加强了实验与数学能力相结合的考察
3.重视对基本实验方法和实验技能的培养
从2009年的实验题目看,实验所涉及的原理永远在课本要求的几个实验之中.不能盲目地猜题和押题,还是要重视基础.特别注重让学生利用已学知识、原理和方法在题设的条件和情境下,按照题设的要求制定出实验方案,选择实验器材,设计方案等.不能再局限于几个实验的照搬照抄,也不要对经典实验进行简单、机械地“改装”,要开阔思路,在课堂上利用一些开放性实验提炼学生的思维能力,多予关注创新型实验的设计.
4.实验教学应该重点体现探索过程而不仅仅是呈现结果
新课程的中心理念之一便是改变以往的接受式学习为探究式学习,从这两年的实验题目看,连续出现让学生设计实验过程,或者设计解决方案,问题非常开放.如果学生只记住了实验的结论,面对这样的提问,往往会无从下手,因为他们的脑海中没有这样的“标准答案”.在实验教学中,要真正落实探究的学习方式,让学生参与到发现的过程中去,才能培养他们的思维品质,才能培养他们的实验能力,学生是在思考和行动中掌握本领,领会知识的.
5.要关注实验的拓展练习
如果仅仅局限于让学生记住几个实验,学生在高考时一碰到陌生的题目,很快便会乱了阵脚,不知道知识之间的联系.如何拓展实验呢?譬如在练习打点计时器时,可以问学生:利用打点计时器可以解决哪些问题?测量地球重力加速度的方法有哪些?让学生充分讨论,找到各自的方法,充分调动学生的积极性,开拓学生视野,为高考中的实验变形做好充分的准备.
6.实验学习和物理理论学习应该融为一体
实验的作用不能仅仅停留在教学的手段的层面上,而应该是贯穿在整个教学过程中创造物理情景、探索物理规律,实验过程就是一个学习探索的过程。
九、高三复习建议:
1.抓好复习课的组织教学,树学生的学习信心,重视情感交流与心理辅导。复习课教学仍应以人为本。学生不是听课的机器,要注意与学生之问的交流,加强与学生的沟通,树立服务意识,帮助学生克服学习中遇到的困难和障碍。
2.要关注学生是复习的主体
(1)激发学生的主观能动性和学习兴趣。
(2)培养学生的学科能力。
(3)及时检测复习的质量,针对学生反馈的问题,督促他们取矫正措施。
3.对待试题难度因素的复习策略
根据不同学生能力特长的差异、不同学生高考期望值的差异、不同试题的难度因素的差异取恰当策略。
(1) 抓有效训练,根据学情精选习题,控制好习题难度,避免简单重复。
(2)抓能力培养和应试指导,一定要让学生自己动笔去做,切实克服以教代学的现象。
(3)抓试题研究,及时反馈学生的答卷情况,争取做到试卷讲评不隔天。
(4)抓边缘生。
(5)抓常规训练,发挥作业批改和矫正作用,减少高考因“笔误”而丢分。
第二部分:2010年高考理综物理后期复习建议
一、考生反映出的问题:
1. 对基础知识理解不到位;
例1(09北京)下列现象中,与原子核内部变化有关的是
A.α粒子散射现象
B.天然放射现象
C.光电效应现象
D.原子发光现象
例2图中EF、GH为平行的金属导轨,其电阻可不计,R为电阻器,C为电容器,AB为可在EF和GH上滑动的导体横杆。有均匀磁场垂直于导轨平面。若用Il和I2分别表示图中该处导线中的电流,则当横杆AB
A.匀速滑动时,Il=0,I2=0
B.匀速滑动时,Il≠0,I2≠0
C.加速滑动时,Il=0,I2≠0
D.加速滑动时,Il≠0,I2≠0
例3: 如图所示,固定容器及可动活塞P都是绝热的,中间有一导热的固定隔板B,B的两边分别盛有气体甲和乙。现将活塞P缓慢地向B移动一段距离,已知气体的温度随其内能的增加而升高,则在移动的过程中, C
A、外力对乙做功;甲的内能不变
B、外力对乙做功;乙的内能不变
C、乙传递热量给甲;乙的内能增加
D、乙的内能增加;甲的内能不变
2、对典型的物理过程模型落实不到位;
例1: 在光滑水平地面上有两个相同的弹性小球A、B,质量都为m。现B球静止,A球向B球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为Ep,则碰前A球的速度等于
例2: (06北京卷)如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为t。若该微粒经过p点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上。两个微粒所受重力均忽略。新微粒运动的 (D)
A.轨迹为pb,至屏幕的时间将小于t B.轨迹为pc,至屏幕的时间将大于t
C.轨迹为pb,至屏幕的时间将等于t D.轨迹为pa,至屏幕的时间将大于t
例3: 如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴O。现给球一初速度,使球和杆一起绕O轴在竖直面内转动,不计空气阻力,用F表示球到达最高点时杆对小球的作用力,则F
A.一定是拉力 B.一定是推力
C.一定等于0 D.可能是拉力,可能是推力,也可能等于0
在竖直面内的圆周运动是一个典型的物理过程,同时解决这类问题一般又需要将牛顿运动定律与机械能守恒定律综合运用,因此是一个高考命题的高频点。
物体在竖直面内的圆周运动可以有不同的束缚方式,如绳、杆、轨道或管道等。对于不同的束缚方式,在最高点时有不同的最小速度,在“杆、外轨道、管道”束缚时,最小速度可以为零;在“绳、内轨道”束缚时,最小速度为
3、分析、解决问题的思维程序不规范;
例1: 在如图所示的电路中,R1、R2、R3和R4皆为定值电阻,R5为可变电阻,电源的电动势为E,内阻为r。设电流表A的读数为I,电压表V的读数为U。当R的滑动触点向图中a端移动时
A.I变大,U变小 B.I变大,U变大
C.I变小,U变大 D.I变小,U变小
例2: 蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m高处。已知运动员与网接触的时间为1.2s。若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。(g=10m/s2)
从h1高处下落(①→②),
刚接触网时速度的大小v1= (向下);
弹跳后到达的高度为h2(④→⑤),
刚离网时速度的大小v2= (向上)。
与网接触的过程(②→④)
运动员的加速度 a =
4、对物理学科产生畏难情绪,不细致审题便放弃;
例1: 电视机的显像管中,电子束的偏转是用磁偏转技术实现的。电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图所示。磁场方向垂直于圆面;磁场区的中心为O,半径为r。当不加磁场时;电子束将通过O点而打到屏幕的中心M点。为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度B应为多少?
例2: 原地起跳时,先屈腿下蹲,然后突然蹬地。从开始蹬地到离地是加速过程(视为匀加速),加速过程中重心上升的距离称为“加速距离”。离地后重心继续上升,在此过程中重心上升的最大距离称为“竖直高度”。现有下列数据:人原地上跳的“加速距离”d1=0.50m,“竖直高”h1=1.0 m;跳蚤原地上跳的“加速距离”d2=0.00080m,“竖直高度”h2=0.l0m。想人具有与跳蚤相等的起跳加速度;而“加速距离”仍为0.50m,则人上跳的“竖直高度”是多少?
5、考场上时间利用率低下。
(1)会的题慌乱中完成,不能保证会的题不失分
(2)不会的题盲目乱写,瞎耽误时间
(3)答题——检查没有章法,重复使用时间
(4)改错方法不得当
二、第二轮复习的几点建议
第二轮复习大体安排
时间:3月至5月中旬,大约两个月时间
任务:
(1)查漏补缺:针对第一轮复习存在的问题进一步强化基础知识的复习和基本技能的训练,进一步强化规范解题的训练。
(2)知识重组:进行专题综合训练,形成知识网络。
(3)提升能力:一是提升规范解题能力,二是提高实验操作能力。
注意事项:
(1)不要平均使用时间和精力,要做重点知识要重点复习;
(2)不要盲目拔高,要有针对性地开展专题训练;
(3)不要迷信市面上的各种复习资料,而要以第一轮复习中学生暴露的问题为切入点做好妥善安排。
建议一:突出重点,狠抓主干知识的复习不动摇;
1、中学物理主干知识:
力学:
(1)力与物体的平衡;
(2)牛顿运动定律与运动规律的综合应用;
(3)动量守恒定律的应用;
(4)机械能守恒定律及能的转化和守恒定律
电和磁:
(1)带电粒子在电、磁场中的运动;
(2)有关电路的分析和计算;
(3)电磁感应现象及其应用。
2、强化学科内主干知识的综合复习与训练,建立知识间的纵横联系,形成知识网络:
总体来看,第二轮的复习要做好四个方面的综合:
一是力学内综合; 二是电学内综合; 三是力与电磁的综合; 四是实验的综合。
力学中可进行如下专题复习:
(1)力与物体的平衡;(2)牛顿定律与匀变速直线运动;
(3)能量和动量; (4)曲线运动与万有引力; (5)振动和波动等。
电磁部分可进行如下专题综合复习:
(1) 带电粒子在电场、磁场中为模型的电学与力学的综合:
①利用牛顿定律与匀变速直线运动的规律解决带电粒子在匀强电场中的运动;
②利用牛顿定律与圆周运动向心力公式解决带电粒子在磁场中的运动,
③用能量观点解决带电粒子在电场中的运动。
(2)电磁感应现象与闭合电路欧姆定律的综合,用力学和能量观点解决导体在匀强磁场中的运动问题;
(3) 串、并联电路规律与实验的综合,
①通过粗略的计算选择实验器材和电表的量程,
②确定滑动变阻器的连接方法,
③确定电流表的内外接法。
每个专题中都应从以下几个方面进行:
(1)知识结构分析: (2)主要命题点分析: (3)方法探索:
(4)典型例题分析: (5)配套训练:
例专题复习:
牛顿定律与匀变速运动
一、知识结构
1、基本概念:质点、匀变速直线运动、匀变速曲线运动、加速度、位移等
2、基本规律:
(1)匀变速直线运动的三个规律及三个推论;
(2)牛顿三定律;
(3) 平抛运动的规律;
3、匀变速运动是加速度恒定不变的运动,从运动轨迹来看可以分为匀变速直线运动和匀变速曲线运动。
4、从动力学上看,物体做匀变速运动的条件是物体受到大小和方向都不变的恒力的作用。匀变速运动的加速度由牛顿第二定律决定。
5、原来静止的物体受到恒力的作用,物体将向受力的方向做匀加速直线运动;物体受到和初速度方向相同的恒力,物体将做匀加速直线运动;物体受到和初速度方向相反的恒力,物体将做匀减速直线运动;若所受到的恒力方向与初速度方向不在同一直线上,物体就做匀变速曲线运动。
二、主要命题点分析:
(1)力学中质点在恒力作用下的运动:
①匀变速直线运动(三个规律、三个推论、打点计时器纸带的处理等);
②匀变速曲线运动——平抛运动(概念、特点、运动规律、两点讨论)。
(2)带电粒子在匀强电场中的运动:匀加速直线运动、类平抛运动等。
(3)通电导体在磁场中运动:安培力作用下的运动问题。
(4)电磁感应过程中导体的运动等。
三、方法探索
1、常用方法:
(1)运用牛顿运动定律解题的基本步骤和方法:
①确定研究对象,进行受力分析;
②建立适当的直角坐标系,进行正交分解;
③由牛顿运动定律和物体的运动状态建立方程(可能既有动力学方程,也有运动学方程);
④求解方程并对结果进行讨论。
(2)运用动能定理求解力学问题的基本步骤和方法:略
2、特殊问题的特殊方法:
(1)坐标系下图象问题的处理方法和步骤:
①弄清坐标轴的物理意义及物理量的单位;
②找出图象中的特殊点、线、面及其对应的物理过程或物理意义;
③由特殊点的坐标建立相应的物理规律(方程);
④求解并讨论。
(2)特殊的运动:
①匀减速直线运动至静止:逆推法——当成是初速度为0的匀加速直线运动来处理。
②初速为0的匀加速,某一时刻开始匀减速至静止:
③临界问题的理解和分析。
从04年与05年的两道高考题说起:
05年全一23题:(原地起跳问题,题略)
04年全一25题:(抽桌布问题,题略)
共同点:同一类运动模型的研究:初速度为零——匀加速——匀减速——未速度为零。要说有区别,那就是05年的情境设置要简单,所涉及和应用的物理规律要更少一些。这类运动问题非常重要,特点非常明显(中间特殊点)
一种典型的运动模型:
物体自A点由静止出发作匀加速直线运动,至B点突然改为匀减速度直线运动,至C点停止运动。
设AB、BC段物体的加速度、位移、运动时间分别为a1、 s1 、 t1、 a2 、s2、t2;物体通过B点时的速度大小为V,则可将物体的运动看成两段初速度都为0的匀加速度直线运动。于是有:
a1 t1= a2 t2=V ① a1s1=a2s2 =V2/2 ②
s1 /t1 =s2/t2=V/2 ③ VAB=VBC = VAC=V/2 ④
变形题型:
例1:一长途公共汽车从车站出发作匀加速直线运动,突然发现少了一名乘客,司机于是刹车使车作匀减速直线运动停下来等这名乘客。整个过程历时10秒,车发生位移15米,求车运动过程中的最大速度。
例2:一物体从静止出发以加速度a1作匀加速直线运动,经过一段时间,突然改为以加速度a2作匀减速直线运动,直至静止。全过程中位移为S,求运动全过程所用的时间。
例3:一物体从静止出发以加速度a1作匀加速直线运动,经过一段时间,改为匀速直线运动,后改为以加速度a2作匀减速直线运动,直至静止。全过程中位移为S,求运动全过程所用的时间的最小值。
高中物理有关名人的知识点
复习时,把高考物理交变电流公式的要点内容熟练运用,相信可以提高物理成绩。下面我给大家带来高考物理交变电流公式,希望对你有帮助。
高考物理交变电流公式
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;ω=2πf
2.电动势峰值Em=nBSω=2BLv 电流峰值纯电阻电路中Im=Em/R总
3.正余弦式交变电流有效值:E=Em/21/2;U=Um/21/2 ;I=Im/21/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,用高压输送电能可以减少电能在输电线上的损失损′=P/U2R;P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻〔见第二册P198〕;
6.公式1、2、3、4中物理量及单位:ω:角频率rad/s;t:时间s;n:线圈匝数;B:磁感强度T;S:线圈的面积m2;U输出电压V;I:电流强度A;P:功率W。
注:
1交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;
2发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;
3有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;
4理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;
5其它相关内容:正弦交流电图象〔见第二册P190〕/电阻、电感和电容对交变电流的作用〔见第二册P193〕。
高考物理学史知识点
1布朗:英国植物学家,在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”.
2开尔文:英国科学家,创立了热力学温标.
3克劳修斯:德国物理学家,建立了热力学第二定律.
4麦克斯韦:英国科学家,总结前人研究的基础上,建立了完整的电磁场理论.
5赫兹:德国科学家,在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,并测得电磁波传播速度等于光速,证实了光是一种电磁波.
6惠更斯:荷兰科学家,在对光的研究中,提出了光的波动说,发明了摆钟.
7托马斯·杨:英国物理学家,首先巧妙而简单地解决了相干光源问题,成功地观察到光的干涉现象.
8伦琴:德国物理学家,继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线——伦琴射线.
9普朗克:德国物理学家,提出量子概念——电磁辐射含光辐射的能量是不连续的,其在热力学方面也有巨大贡献.
10爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论.
11德布罗意:法国物理学家,提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应.
12汤姆生:英国科学家,研究阴极射线时发现了电子,测得了电子的比荷;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象.
13卢瑟福:英国物理学家,通过α粒子的散射现象,提出原子的核式结构.实现人工核转变的第一人,发现了质子.
14玻尔:丹麦物理学家,把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论.
15查德威克:英国物理学家,从原子核的人工转变实验研究中,发现了中子.
16威尔逊:英国物理学家,发明了威尔逊云室以观察α、β、γ射线的径迹.
17贝克勒尔:法国物理学家,首次发现了铀的天然放射现象,开始认识原子核结构是复杂的.
18玛丽·居里夫妇:法国波兰物理学家,是原子物理的先驱者,“镭”的发现者.
19约里奥·居里夫妇:法国物理学家;老居里夫妇的女儿女婿;首先发现了用人工核转变的方法获得放射性同位素.
高考物理学习方法
听得懂
高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
记牢固
尤其是基本的概念。定义、定律、结论等,不要把这些看成可记可不记的知识,轻视了,高中生对物理问题的理解、运用就会受阻,在物理解题过程中就会因概念不清而丢分,掌握三基本:基本概念清、基本规律熟、基本方法会,这些都是要记住的范畴。只有这样,高中生学习物理才会得心应手,各种难题才会迎刃而解。
会运用
会运用才是提高成绩的根本,就是对概念、公式等要掌握灵活,活学活用,不是死记硬背,不同的题型用不同的解题方法,公式的运用也是做到灵活多变,以达到正确解题的目的。比如对于牛顿三大运动定律、什么是动量、为什么动量会守恒这些动力学的基本概念的理解,仅仅停留在字面上学起来就是枯燥的,甚至是难于理解的,而这些知识又影响着整个力学的学习过程,所以,在高中物理学习过程中,试着把这些概念化的内容融于各种题型中,将其内化成高中生的基本知识,另辟思路,学起来就容易得多了,学习效益会翻倍。
练得熟
高中物理知识是分板块的,各内容间既相互联络,又相互区别,所以在物理学习过程中,练是很有必要的,俗话说,熟能生巧,练得多了,也就轻车熟路了,各知识点之间就能形成一定的类比,高中生就可以将前后知识融会贯通,由点及面的综合运用了。
物理学史高考完整版
适用于全国一卷
一、力学
1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体不会比轻物体下落得快;他研究自由落体运动程序如下:
提出说:自由落体运动是一种对时间均匀变化的最简单的变速运动;
数学推理:由初速度为零、末速度为v的匀变速运动平均速度 和 得出 ;再应用 从上式中消去v,导出 即 。
实验验证:由于自由落体下落的时间太短,直接验证有困难,伽利略用铜球在阻力很小的斜面上滚下,上百次实验表明: ;换用不同质量的小球沿同一斜面运动,位移与时间平方的比值不变,说明不同质量的小球沿同一斜面做匀变速直线运动的情况相同;不断增大斜面倾角,重复上述实验,得出该比值随斜面倾角的增大而增大,说明小球做匀变速运动的加速度随斜面倾角的增大而变大。
合理外推:把结论外推到斜面倾角为90°的情况,小球的运动成为自由落体,伽利略认为这时小球仍保持匀变速运动的性质。(用外推法得出的结论不一定都正确,还需经过实验验证)
伽利略对自由落体的研究,开创了研究自然规律的一种科学方法。
2.1683年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律。
3.17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
4.20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
5.17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。
6.我国宋朝发明的火箭与现代火箭原理相同,但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);多级火箭一般都是火箭,我国已成为掌握载人航天技术的第三个国家。
7.17世纪荷兰物理学家惠更斯确定了单摆的周期公式。周期是2s的单摆叫秒摆。
8.奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。(相互接近,f增大;相互远离,f减少)
二、热学
1.1827年英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。
2.19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。
3.1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。
4.1848年开尔文提出热力学温标,指出绝对零度(-273.15℃)是温度的下限。T=t+273.15K
热力学第三定律:热力学零度不可达到。
5.瓦特在1782年研制成功了具有连杆、飞轮和离心调速器的双向蒸汽机。
三、电磁学
1.1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。
2.1752年,富兰克林在费城通过风筝实验验证闪电是电的一种形式,把天电与地电统一起来,并发明避雷针。
3.1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。
4.1911年荷兰科学家昂尼斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。
5.1841~1842年 焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律。
6.1820年,丹麦物理学家奥斯特发现电流可以使周围的磁针偏转的效应,称为电流的磁效应。
安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥;同时提出了安培分子电流说。
荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。
7.汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。
1932年美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。
8.1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应现象;
1834年楞次发表确定感应电流方向的定律。
9.1832年亨利发现自感现象,即在研究感应电流的同时,发现因电流变化而在电路本身引起感应电动势的现象。日光灯的工作原理即为其应用之一。双绕线法制精密电阻为消除其影响应用之一。
10.1864年英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场的基本方程组,后称为麦克斯韦方程组,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波。
1887年德国物理学家赫兹用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。
四、光学
1.公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。
2.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。
3.1621年荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。
4.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。
1801年,英国物理学家托马斯?杨成功地观察到了光的干涉现象
1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。
1864年英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波,1887年由赫兹证实。
1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。
1900年,德国物理学家普朗克为解释物体热辐射规律提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律。
1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)
光具有波粒二象性,光是电磁波、概率波、横波(光的偏振说明光是一种横波)。
光的电磁说中要注意电磁波谱,还要注意原子光谱。
5.1913年,丹麦物理学家玻尔提出了自己的原子结构说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。
6.1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。
五、原子物理学
1.18年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。
2.1909年-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。
3.1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核也有复杂的内部结构。
天然放射现象有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变的快慢(半衰期)与原子所处的物理和化学状态无关。
4.1917年密立根测定电子的电量。
5.1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。并预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。
6.1939年12月德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。1942年在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。
7.1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是利用强激光产生的高压照射小颗粒核燃料。
8.现代粒子物理
1932年发现了正电子,1964年提出夸克模型;
粒子分为三大类:媒介子,传递各种相互作用的粒子如光子;
轻子,不参与强相互作用的粒子如电子、中微子;
强子,参与强相互作用的粒子如质子、中子;强子由更基本的粒子夸克组成,夸克带电量可能为元电荷的 或 。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。