1.江西文科数学高考考点

2.文科数学学什么内容 文科怎么学数学

3.高中文科数学高考范围有哪些?

4.高考文科数学和理科数学有什么区别

5.四川高考文科数学重点考察那几个模块

6.高三文科函数的重点是什么?高三的数学怎么学?

江西文科数学高考考点

高考数学文科知识点-高考文科数学重点

江西文科数学高考考点如下:

一、导数的应用

1.用导数研究函数的最值

确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少。

右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2.生活中常见的函数优化问题

1)费用、成本最省问题

2)利润、收益问题

3)面积、体积最(大)问题

二、推理与证明

归纳推理:归纳推理是 高二数学 的一个重点内容,其难点就是有部分结论得到一般结论,破解的 方法 是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征。

破解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

三、不等式

对于含有参数的一元二次不等式解的讨论

1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来。

则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中 总结 出来。

文科数学学什么内容 文科怎么学数学

对于文科来说,数学就是拦路虎,绝大多数的文科生对于数学都有不同程度的恐惧,但数学又是决定高考成败的关键。我整理了《文科数学学什么内容 文科怎么学数学》,供大家参考!

文科数学学什么内容

文科数学一共会学7本书,分别是:必修1、必修2、必修3、必修4、必修5、选修2-1、选修2-2。

文科数学主要学习的内容有:集合;函数;空间几何体;点、直线、平面之间的位置关系;直线和方程;圆和方程;算法初步;概率;统计;三角函数;平面向量;数列;不等式;常用逻辑用语与推理、证明;圆锥曲线与方程;导数及其应用;复数。

文科怎么学数学

文科数学相对理科数学来说,难度较低。因此我们要在两个地方多下功夫:做题的正确率和做题的速度。所以不难看出文科学数学的思路就是题海战术。很多都知道题海战术,也都是这么做的,所以效果自然不需要多说。

高中的数学是非常有规律、有体系的,学数学最忌基础没有打好,老师讲的内容没有把握好重点。基础没有打好,无论做多少题都白做,因为不知道为什么而做,更不知道做完一道题该掌握什么,做题的目的就是为了掌握书上的知识点;还有就是自己买的习题书太多了,做不完,而且还做乱了,有一本习题书就够了,最多不要超过两本。记住,做数学千万不能怕动手动脑子,只要你一咬牙投入进去,你做数学真的会上瘾的。

建议你提前两天预习,第一天学课本上的基础知识,第二天把习题做了,老师上课,你听的轻松,一天课完了,复习一下老师讲的重点,着重想想思路,一个定理怎么来的,一道题目怎么解的,都用了哪些定理。一定要理解,学习如果记硬背那就完了。做完题了,要总结,不要怕麻烦,越怕麻烦越学不好。

高三总复习的时候好好听老师讲,把你高一时的那些习题集再拿出来做一遍,到后期你们练习卷子的时候更要注意总结,你会发现高考考的不外乎就是那几个题型。

高中文科数学高考范围有哪些?

高中文科数学高考范围有三角函数、向量、概率与统计、立体几何、数列、圆锥曲线、函数、导数与不等式等。

1、三角函数、向量、解三角形

(1)三角函数画图、性质、三角恒等变换、和与差公式。(2)向量的工具性。(3)正弦定理、余弦定理、解三角形背景。

2、概率与统计

(1)古典概型。(2)茎叶图。(3)直方图。(4)回归方程(2x2列联表)。(5)(理)概率分布、期望、方差、排列组合。

3、立体几何

(1)平行。(2)垂直。(3)角a:异面直线角b:(理)二面角、线面角。(4)利用三视图计算面积与体积。

4、数列

(1)等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。(2)错位相减法、裂项求和法。(3)应用题。

5、圆锥曲线(椭圆)与圆

(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。(2)圆的方程,圆与直线的位置关系。

6、函数、导数与不等式

(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。(2)利用基本不等式、对勾函数性质。

三角函数/数列:一般全国卷第17题会考三角函数或数列题。数列是最简单的题目,或许你觉得它难,但它能放在第一道大题的位置,就说明你不应该丢分。

概率:一般全国卷第18题会考概率题。概率题相对比较简单,也是必须得分的题,主要还是对作图和识图能力考查比较多。

解析几何:一般全国卷第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。

高考文科数学和理科数学有什么区别

考试内容不同、题型不同、重点知识点不同等区别。

1、考试内容不同:高考文科数学和理科数学的考试内容有所不同。文科数学主要涉及基本的数学概念、运算、函数与方程、几何等内容,注重数学的应用和解决实际问题的能力。而理科数学则更加注重数学的理论和推导,包括数列与数学归纳法、三角函数与解三角形、微积分等内容。

2、题型不同:文科数学和理科数学的题型也有所区别。文科数学的题型相对较为简单,主要包括选择题、填空题、计算题和简答题等。而理科数学的题型相对较难,包括选择题、填空题、计算题、证明题和应用题等,要更深入的数学理解和推导能力。

3、重点知识点不同:文科数学和理科数学的重点知识点也有所差异。文科数学的重点在于基本的数学概念和运算,如四则运算、代数运算、平面几何等。而理科数学的重点在于数学的理论和推导,如函数与方程、数列与数学归纳法、微积分等。

四川高考文科数学重点考察那几个模块

我直接说后面的大题吧,第一二个一般是三角函数,和立体几何,然后是数列,以及一些代数问题,最后两个大题一般都是解析几何,一般是椭圆,双曲线什么的,以及导数,嗯,这个其实很简单,加油,一般就是这几个板块,选择题也大致如此

高三文科函数的重点是什么?高三的数学怎么学?

重点是导函数,二次函数,反函数,三角函数,指数函数和对数函数的运算,当然函数的定义域和值域也是重点。公式嘛,有这样一些了。数学公式

抛物线:y

=

ax

*+

bx

+

c

就是y等于ax

的平方加上

bx再加上

c

a

>

0时开口向上

a

<

0时开口向下

c

=

0时抛物线经过原点

b

=

0时抛物线对称轴为y轴

还有顶点式y

=

a(x+h)*

+

k

就是y等于a乘以(x+h)的平方+k

-h是顶点坐标的x

k是顶点坐标的y

一般用于求最大值与最小值

抛物线标准方程:y^2=2px

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)

准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px

y^2=-2px

x^2=2py

x^2=-2py

三角函数:

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/(1-tan2A)

cot2A=(cot2A-1)/2cota

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0

以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

·万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

半角公式

sin(A/2)=√((1-cosA)/2)

sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)

cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA))

cot(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

cotA+cotBsin(A+B)/sinAsinB

-cotA+cotBsin(A+B)/sinAsinB