1.高考立体几何题向量法的法向量的求法是什么

2.高考数学立体几何得分标准_数值错误的扣分

3.数学高考六道大题的题型

4.关于高考数学最后一道题

5.高考数学压轴题解法全归纳哪里可以买到

6.高考数学压轴题解题技巧

高考立体几何题100道及答案_立体几何高考压轴题

上海2023年高考数学变化点:四大考点变五大

四大考点变五大!这意味着,2023年上海高考,将是新教材下的第一届上海新高考数学1、预测考试难度增大,向全国新课标卷难度靠近!2、导数大概率将是重点,压轴题也许是函数导数综合题!

因此,上海高中生尤其要注意对高二学习的导数部分要拓宽深度和广度,以及加强计算能力的培养,趁早克服高考难度上升带来的不利影响!

第一大考点:函数高一就学,是高中数学第一道坎,也是贯穿整个高中数学的重要基础知识点。第二大考点立体几何高考分值占比高,接近15-20分。第三大考点:解析几何计算量大,掌握简便答题方法和计算技巧尤为重要,同时也是上海高考数学压轴题的重要考点之一,学霸必争。

第四大考点:数列是高考不可撼动的压轴必考题。作为高中数学的主干知识,有很强的渗透和辐射性,是高考复习的重点内容。第五大考点:导数是业界公认高考最难题型。沪教课改新增导数,上海高考数学卷对标全国卷,难度骤然提升,想拿高分必须拿下导数。这五大部分均分值高、难度大,是高考数学的关键拉分点!

高考数学技巧如下:

1、熟悉考试形式:高考数学考试包括选择题、填空题、解答题三部分,每部分都有不同的题型和难度。在考试前,要熟悉考试形式,了解每部分的题型和难度,制定相应的复习计划。

2、掌握基础知识:高考数学考试考查的是基础知识,包括数学概念、公式、运算法则等。因此,要在高考前掌握基础知识,特别是数学概念和公式。

3、多做真题:做真题是提高高考数学成绩的有效方法。通过做真题,可以了解考试的题型和难度,熟悉考试的规律,提高解题能力。

4、学会归纳总结:高考数学考试题型多样,有些题型比较常见,而有些题型则比较新颖。在做题的过程中,要学会归纳总结,找出每种题型的解题规律,加深对数学概念和公式的理解。

5、提高解题速度:高考数学考试的时间比较紧张,要在有限的时间内完成题目,这就需要提高解题速度。可以通过多做题、熟悉题型和解题技巧来提高解题速度。

6、保持心态稳定:高考数学考试是一项重要的考试,要保持心态稳定,避免紧张和焦虑,影响解题速度和质量。可以通过适当的放松和休息、调整心态来保持心态稳定。

高考立体几何题向量法的法向量的求法是什么

最小角定理:

斜线和平面所成的角,是平面的斜线和它在平面内的射影所成的角,它是这条斜线和这个平面内任一条直线所成的角中最小的角.即最小角定理.

高考数学立体几何得分标准_数值错误的扣分

设法向量为n=(x,y,z),然后利用这个向量与目标平面内的两条直线上的向量(方向向量)垂直,每一个垂直可以获得一个关于x,y,z的方程,这样你就获得了两个方程组成的方程组,这个方程组有无数组解。

事实上,平面的法向量是不确定的,就其方向来说,也有两大类,再加上模不确定),那么这些,你可以由上面的方程组里,目测一下,哪个量的绝对值较小,便取这个量为1(当然2等等也可以,这样就可以确定出所有的坐标了。

如:得到2x+3y-z=0,x-2y=0这样的方程组后,可以发现x是y的两倍,便设y=1,这样x=2,则z=9,于是便可取法向量n=(2,1,9),事实上,所有与这个向量共线的向量均为法向量,如(1,1/2,9/2)等。

法向量:

法线是与多边形(polygon)的曲面垂直的理论线,一个平面(plane)存在无限个法向量(normal vector)。在电脑图学(computer graphics)的领域里,法线决定着曲面与光源(light source)的浓淡处理(Flat Shading),对于每个点光源位置,其亮度取决于曲面法线的方向。

如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。

垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。

数学高考六道大题的题型

1、两个二倍角公式,诱导公式,各给1分;

2、如果只有最后一步结果,没有过程,则给1分,不影响后续得分;

3、最后一步结果正确,但缺少上面的某一步过程,不扣分;

4、如果过程中某一步化简错了,则只给这一步前面的得分点。

扩展资料:

对于高考数学题,特点是压轴题,有很多同学抱着“回避”的态度,这种“回避”必然导致“起评分”降低--别人从“150分”的试题中得分,而你只能从“120分”的试题中得分。

因此,从某种意义上说,这种“回避”增加了考试的难度!因为,假如有些基础题你思维“短路”,立刻导致考试“溃败”。

其实,只要我们了解高考数学题的特点,并且掌握一定的答题技巧,注意评分的细则,相信同学们还是能够取得高分的。下面,我谈一谈我的几点认识,供同学们参考。

关于高考数学最后一道题

数学高考六道大题题型为:三角函数,概率,立体几何,函数,数列,解析几何。三角函数,概率,立体几何相对较容易。函数,数列,解析几何类经常做压轴题,相对较难。

一、三角函数题

注意归一公式、诱导公式的正确性。转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变,符号看象限)时,很容易因为粗心,导致错误。

二、数列题

1、证明一个数列是等差数列时,最后下结论时要写上以谁为首项,谁为公差的等差数列。

2、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题

求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系。

四、圆锥曲线问题

注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法。

高考数学压轴题解法全归纳哪里可以买到

历年全国高考数学试卷中,压轴题(解答题最后一题)的分值为14分,将近占卷面总分的10%,且综合性较强,对考生的数学能力,思维能力也有较高要求,其难度和重要性自然不言而喻..压轴题一般涉及到函数(数列属于特殊的函数),解析几何,不等式三大方面内容,还穿插有集合思想,三角代换与运算,向量与导数的运用(新教材内容),立体几何初步等等.

解析几何

是一个高考的难点,这个年主要是学科特点决定的。解析几何是用代数方法解决几何问题的学科。所以,既有形又有数,对于数形结合的思想考查的比较多,要求也比较高。再一个,你用代数方法解决几何问题的过程当中,对于代数方法的要求,也就是对字母运算等等,或者是方程变形等等这些要求也相当高,这些难点集中在一块,就使得解析几何这个问题非常难。

要解好解析几何这个问题,第一不要怕,为什么?现在解析几何的题已经不是高考当中最难的题,所以同学们要有信心解好。再一个怎么解好它呢?就要分析一下解析几何难在什么地方?很多同学做解析几何的时候,第一有可能不知道从哪入手,第二一对式子摆在那,列出一对方程来,下面不知道怎么处理,第三运算不过关,一算就错。针对这些问题,建议同学们复习的过程当中,不知道从哪入手的方面,就是要做好几何量和代数量的相互转化,几何量怎么样迅速地转化成代数表述。像圆锥曲线的定义,在数与形之间建立联系,恰当地做好数和形的转化。再一个,很多同学写出一堆式子来,不知道怎么办?这个是往往缺乏目标性。解析几何应该是一个整体思维,你先想好要干什么,再去做。如果是漫无目标的,比如把直线方程和圆锥曲线方程摆在那,下面怎么做,就不知道了,其实就是缺乏目标性。所以要注意整体思维。

函数与数列不等式的综合题

这也是高考的重点。这一部分的内容特别考查能力。但是,现在高考关于这一部分考查能力的题目,往往是几个考查重点和热点的有机组合,他们都来自于简单题,是简单题的叠加,所以,我们要做好这种题的话,我觉得可能系统掌握各方面的知识比你在某一方面深挖洞好得多。你光是在某一方面学得特别多,但是不能把它有机地整合,也做不好这种题。

也就是说,最主要的还在于把握基础,把这个基础知识点、基本方法充分掌握的前提下,学会怎么把一个看起来复杂的问题,很综合的问题分解成几个部分。这几个部分,当然就是小的,比如把一个综合问题分解为这部分是函数,是有关值域的,那部分是有关数列的,分解成这样几个问题的话,可能同学做起来就很简单了。

我就想起来前一段我们刚开学,我们有一次月考,考完试之后,有一个老师就跟我说,他们班考的最好的两位同学,都是假期没怎么太做新题,都是把以前的题好好过了一遍。考的最好的两位同学是这样。你想想这件事情,是很有道理的。反过来我们看一看高三所做的那些题,有很多内容,其实高一高二的时候就做过了。第一轮复习有很多内容都是已经复习的比较全面了,所以,你返回去总结自己已经错的那些东西,已经错过的,或者已经做过的,这件事情是非常非常重要的。在此基础上,如果有同学第二轮复习关死看以前的错题,那也不够,适当的还是要再做一些新题。

高考数学压轴题解题技巧

京东。

根据京东资料显示,在京东上有高考数学全国卷压轴题可以购买,一般情况下,高考数学后几道大题分别是:三角函数,立体几何,数列,圆锥曲线,函数与导数,产品质量高,价格适中。

一般指在试卷最后面出现的大题目。在数学和物理的正规考试中有压轴题。这类题目一般分数多,难度大,考验综合能力强,在考试中能够拉开学生成绩的题目,也是很多学生和老师的重点钻研项目。

高考数学压轴题解题技巧

高考数学中的压轴题,对于很多同学来说,都是一大难题。下面为大家整理了几点高考数学压轴题的答题技巧,供考生参考,希望在今年的高考答题中,能对你有所启发,考出满意成绩!

数学压轴题解题技巧

1高考数学压轴题六大解题技巧

一、三角函数题

注意归一公式、诱导公式的正确性 {转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!}。

二、数列题

1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。)利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题

1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

四、概率问题

1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8.注意条件概率公式;9.注意平均分组、不完全平均分组问题。

五、圆锥曲线问题

1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3.战术上整体思路要保7分,争9分,想12分。

六、导数/极值/最值/不等式恒成立题

1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);2.注意最后一问有应用前面结论的意识;3.注意分论讨论的思想;4.不等式问题有构造函数的意识;5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);6.整体思路上保6分,争10分,想14分。

2高考数学压轴题解题思想

高考数学压轴题解题思想一:函数与方程思想

高中数学函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。

高考数学解压轴题思想二:数形结合思想

高中数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的法宝,又是优化解题途径的良方,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

高考数学解压轴题思想三:特殊与一般的思想

用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。

高考数学解压轴题思想四:极限思想解题步骤

极限思想解决问题的一般步骤为:

(1)对于所求的未知量,先设法构思一个与它有关的变量;

(2)确认这变量通过无限过程的结果就是所求的未知量;

(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

高考数学解压轴题思想五:分类讨论思想

我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。