1.2017年数学高考考纲和16年的区别

2.2017年高考的改革数学部分的几何题是不考了还是作为必考题考查?

3.2017年新高考的科目及分值是多少?

4.怎样评价2017年理科高考数学试卷

2017年普通高中数学新课程标准_2017新课标数学高考

17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为?

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网

(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997?4,0.997?416≈0.959?2,.

20.(12分)

已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

21.(12分)

已知函数=ae?^x+(a﹣2)e^x﹣x.

(1)讨论的单调性;

(2)若有两个零点,求a的取值范围.

(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修4-4,坐标系与参数方程](10分)

在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.

(1)若a=-1,求C与l的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

23.[选修4—5:不等式选讲](10分)

已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.

(1)当a=1时,求不等式f(x)≥g(x)的解集;

(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.

2017年数学高考考纲和16年的区别

辽宁2017高考时用新课标数学Ⅱ卷,选修题在22,23,24,三题中选一个作答。

其中(22题几何证明选修4--1,23题极坐标与参数方程选修4--4,24不等式选讲4--5)所占分数是10分。

2017年高考的改革数学部分的几何题是不考了还是作为必考题考查?

1、增加了数学文化的要求。

2、在能力要求内涵方面,增加了基础性、综合性、应用性、创新性的要求,同时对能力要求进行了加细说明,使能力要求更加明确具体。

3、在现行考试大纲三个选考模块中删去《几何证明选讲》,其余2个选考模块的内容和范围都不变,考生从《坐标系与参数方程》、《不等式选讲》2个模块中任选1个作答。

总体上,这些变化对2017年高考数学考试影响不大。基于两个原因:

一是在这次高考考纲修订基本原则 “坚持整体稳定,推进改革创新;优化考试内容,着力提高质量;提前谋篇布局,体现素养导向”中,将“整体稳定”放在了首位。2015年、2016年全国数学2卷就突出了稳中求变,约有80%的试题是稳定的,只有约20%的试题是创新的,2017年高考仍然还会沿用这种思路命制试卷。

二是近两年高考试卷已先于2017年高考考纲在命题中渗透了一些变化与创新,全国数学2卷最大的变化点是,突出了社会主义核心价值观,强调了中国传统数学文化精髓。在数学文化方面,2016年高考全国2卷理科数学第8题、文科数学第9题涉及到了我国南宋著名数学家秦九韶提出的多项式求值的算法,2015年高考全国2卷文、理科数学的第8题涉及到了我国古代数学名著《九章算术》中的“更相减损术”。

这就是说,今年考纲中所提到的新要求、新变化,在两年前的高考中就已经有所体现了,所以2017年高考对我们而言变化不会很大。而第三项变化是选考题由“三选一”变为“二选一”,这将减轻学生的课业负担。

2017年新高考的科目及分值是多少?

2017年数学考试大纲中删去了选考模块4-1“几何证明选讲”的内容,体现了削枝强干,减少重复考查,强化学科体系的导向。考查内容删去“几何证明选讲” 模块的直接理由是因为这部分内容考查的是初中平面几何的知识,几何的主要知识内容在立体几何和解析几何中均有体现,不需要再单独列为专题考查。同时在过去的教学大纲和2017年修订后的课程标准中,都不包含这部分内容。实际上,这也体现了对数学教育的更深层次的认识。

怎样评价2017年理科高考数学试卷

高考各科的分值为:

文科:语文150分,数学150分,外语150分,文科(政治100分,历史100分,地理100分)综合300分,共计750分。

理科:语文150分,数学150分,外语150分,理科(物理110分,化学100分,生物90分) 综合300分,共计750分。

此外,上海地区高考总分为660分,各科分值为:语文150分、数学150分、外语150分,不分文理科,此外考生自主选择的3门选考科目,每门满分均为70分。

江苏省高考总分值为480,各科分值为:语文160分,数学160分,外语120分,共440分。文科类的语文、理科类的数学分别另设附加题40分。需注意在江苏新的高考模式中,总分值设置为750分。考试采取“3+1+2”模式。其中“3”是指统一高考的语文、数学、外语3个科目;“1”是指考生在物理、历史两门选择性考试科目中所选择的1个科目,“2”是指考生在思想政治、地理、化学、生物4门选择性考试科目中所选择的2个科目。语文、数学、外语3门统考科目,每门150分,其中外语科目含听力考试30分。3门选择性考试科目每门100分。其中,物理、历史以原始分计入总分;其余科目(思想政治、地理、化学、生物)以等级分计入总分。

部分地区总分为660分,各科分值设定为:语文150分、数学150分、外语150分,不分文理科,其中外语有两次考试机会,最终选择其中较好的一次成绩计入高考总分。此外考生自主选择的3门选考科目,每门满分均为70分。

有些地区(如内蒙古、新疆、辽宁、山西等)听力部分的成绩不计入总分,作为单列的一项成绩在投档时提供给高校参考;非听力部分120分换算为150分,换算办法:按考生非听力部分的卷面成绩乘以1.25,换算为外语科目成绩。有些地区(如辽宁、广东、河北、湖北、湖南、江苏、福建、重庆等)听力一年考两次,是需要计入高考总分的,并且可以取较高一次成绩计入总分,其他英语笔试题目满分120分。

全国统考科目中的外语分为英语、俄语、日语、法语、德语、西班牙语等6个语种,由考生任选其中一个语种作为考试科目(如:安徽、北京、福建、甘肃、广东、广西、贵州、河北、河南、黑龙江、湖北、湖南、吉林、江西、辽宁、内蒙、宁夏、青海、山东、山西、陕西、四川、天津、西藏、新疆、云南、重庆等27个省市高考满分为750分)。

传统高考模式

传统高考模式就是以前那种采取文理分科的方式进行高考,语数外三科,每科150分,文科的政史地三科每科一百分,理科的物理110分,化学100分,生物90分,使用的试卷是全国卷,按照地区划分,一共三卷。

传统高考模式一直被认为对学生的发展有所限制,一直被教育专家和学生及家长诟病,所以不是很适合当下的适合发展。

新高考模式

新高考模式是我国实行的一种全新的高考模式,目的就是改变传统高考对学生发展的限制,让学生拥有更多的可能。

新高考模式采用3+1+2的形式展开。

以湖北省为例,3是指语数外三个必选科目,每科的分数为150分,1是指选考科目,从历史和物理两科中选一科参考,分值为100分。2是选考科目,从地理、政治、化学、生物四科中选择两科参加考试,每科的分数为100分,总分就是必考三科的450分加上物理或历史选考的100分再加四科选两科的200分,一共750分。

新高考模式已经在多个省份开始试点,完善后就将全国推行,取代传统高考模式。

部分地区根据地方政策,总分有所不同。

以海南和江苏为例,海南省也采用了新高考模式,但是除了必选的三科的450分和选考科目的300分之后,该省的总分计算还计入了考生会考分数的百分之十,满分为150分,所以海南省的高考总分达到了900分。上海满分660分。

试题与去年相比试卷命朴实,平易近人,试卷贴近考生,符合师生期望,整体中较为常规。

试题中不少题目让师生一见如故,平和亲切,重视考查学生的基本数学素养,全盘兼顾知识点、思想方法与能力的考查,关注数学的应用意识与创新意识,除了具有良好的选拔功能,对中学数学教学也具有很好的导向作用,主要表现在注重基础,重视数学素养,加强数学应用与数学思维能力的培养。

注重基础2017年全国高考文科数学Ⅰ卷对基础知识与基础技能的重全面,又突出重点,贴切教学实际,试卷中的每种题型均设置了数量较多的基础题,许多试题都是单一知识点或是最基础的知识交汇点上设置,如1、2、3、6、7、10、11、13、14、15占选择填空题的比例较高达到63﹪.

数学素养方面:

试卷的第12题以解析几何中的椭圆为背景考察了对椭圆的焦点在x,y坐标轴上进行的分类讨论思想,第21题的导数题求导后对a的正负进行的分类讨论思想。第2题以我国太极图中的阴阳鱼为原型,设计几何概型以及几何概率计算问题,贴近考生生活,通过本题的求解,使考生感受中华传统优秀文化的民族性与世界性,深刻地认识到中华民族优秀传统文化的博大精深和源远流长,激励他们创造出更加辉煌的成就。

试卷重视数学知识的应用:

背景来自于学生所能理解的生活现实与社会现实,如19题以生产零件为命题背景,将数学知识与实际问题相结合,考查考生的阅读理解能力以及应用数学知识解决实际问题的能力,体现了数学的应用价值与人文特色,其中知识难度并不复杂,主要在计算能力上的要求较高。对考生的阅读理解能力、数据处理计算能力,理性思维进行了全方面的考查。

综合性与创新性:

为了提高区分度,试卷在注重基础的同时,也充分考查学生的创新意识,试题稳中有变,如第12题,解析几何知识为依托,结合三角函数考查学生对知识点的细节分析能力,给中等学生提供了展示舞台。再如第16题,对学生的空间想象能力,计算能力,分析问题的能力都有较高的要求,对于基础比较好的同学有一定的优势。具有较好的区分度,体现了高考的选拔性。再如第21题,第一问主要考察学生的分类讨论思想,属于学生熟悉的题型,但是对导函数进行因式分解具有一定的难度,第二问比较容易入手,由第1问的讨论学生需要讨论求最小值,难点在于求解不等式,需要学生有较高综合分析能力以及一定的计算能力的要求,这也充分体现了综合性与创新性的特点.当然本题也给优秀学生提供了发挥的平台。

从今年的试卷总体情况来看,新课标卷贴近中学教学实际,注重思想与方法的考察,体现了数学的基础性,应用性和工具性的学科特色,善于应用知识之间的内在联系构建试卷的主体结构,命题更加科学。