1.高考数学证明:”证明:过抛物线准线上的点做抛物线两条切线,则两个切点所在直线过焦点。

2.有没有会解下面这道高考题的,四川省2014年高考理科数学第19题。求大神解答~~题目如下,关于数列的

3.高考切线的有点不懂

4.福建省近三年高考切线

5.2014江西数学数学高考试卷 数学很难?

高考数学证明:”证明:过抛物线准线上的点做抛物线两条切线,则两个切点所在直线过焦点。

14年高考线-2014高考切线

证明:不妨设抛物线是x^2=4py(p>0),准线是y=-p,焦点F(0,p)

设M(t,-p)是准线上任意一点,过M作抛物线的两条切线MA、MB,A、B是切点。

因A、B在抛物线上,设A(2pm,pm^2),B(2pn,pn^2) (m≠n)

由x^2=4py 得y=x^2/(4p), y'=x/(2p)

在A处切线斜率k=m,切线方程是mx-y-pm^2=0

它过M(t,-p)得 mt+p-pm^2=0

即 pm^2-tm-p=0 (1)

在B处切线斜率k=n,切线方程是nx-y-pn^2=0

它过M(t,-p)得 nt+p-pn^2=0

即 pn^2-tn-p=0 (2)

由(1)(2) 得m,n是方程z^2-tz-p=0的两个根

得 m+n=t/p,且 mn=-1 (3)

由A(2pm,pm^2),B(2pn,pn^2) (m≠n)可得直线AB的方程是

(m+n)x-2y-2pmn=0

将(3)代入得 (t/p)x-2y+2p=0

即 tx-2p(y-p)=0

该直线恒过F(0,p)?

得证。

扩展资料:

抛物线的一个描述涉及一个点(焦点)和一条线(准线)。焦点并不在准线上。抛物线是该平面中与准线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由圆锥形表面和平行于锥形母线的平面的交点形成。第三个描述是代数。

抛物线具有这样的性质,如果它们由反射光的材料制成,则平行于抛物线的对称轴行进并撞击其凹面的光被反射到其焦点,而不管抛物线在哪里发生反射。相反,从焦点处的点源产生的光被反射成平行(“准直”)光束,使抛物线平行于对称轴。声音和其他形式的能量也会产生相同的效果。这种反射性质是抛物线的许多实际应用的基础。

百度百科-抛物线

有没有会解下面这道高考题的,四川省2014年高考理科数学第19题。求大神解答~~题目如下,关于数列的

这个题综合考查了指数函数的运算性质,导数的几何意义,等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力,计算能力,"错位相减法",难度还是挺大的。不过答案在下面,仔细看下答案及解题思路,相信你就明白了~

这里就是答案://gz.qiujieda/exercise/math/804188等差数列{an}的公差为d,点(an,bn)在函数f(x)=2^x的图象上(n∈N*).

(1)若a1=-2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;

(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2-1/ln2,求数列{an/bn }的前n项和Tn

高考切线的有点不懂

1:11切线:意思是收一个人要公布前11人的分数。设有1100人参考,收10人,那么就要公布包括那10人在内的110人的分数,而那第110名的那人的分数就是切线分!

不晓得明白了没?

福建省近三年高考切线

福建省份近三年高考切线如下:

1、2022年高考批次线:

首选历史特招线:542分,首选物理特招线:520分。

首选历史本科线:468分,首选物理本科线:428分。

首选历史专科线:220分,首选物理专科线:220分。

2、2021年高考批次线:

首选历史特招线:546分,首选物理特招线:530分。

首选历史本科线:467分,首选物理本科线:423分。

首选历史专科线:220分,首选物理专科线:220分。

3、2020年高考批次线:

文科特招线:550分,理科特招线:516分。

文科本科线:465分,理科本科线:402分。

文科专科线:220分,理科专科线:220分。

福建的大学如下:

1、厦门大学

厦门大学(XiamenUniversity),简称厦大(XMU),由著名爱国华侨领袖陈嘉庚先生于1921年创办,是中国近代教育史上第一所华侨创办的大学。

2、福州大学

福州大学是国家“双一流”建设高校、国家“211工程”重点建设大学、福建省人民与国家教育部共建高校。学校创建于1958年,现已发展成为一所以工为主、理工结合,理、工、经、管、文、法、艺等多学科协调发展的重点大学。

3、福建师范大学

福建师范大学坐落于素有“海滨邹鲁”之誉的历史文化名城福州,是一所历史悠久、声誉斐然的百年省属高等学府。由华南女子文理学院、福建协和大学、福建省立师范专科学校等单位几经调整合并,于1953年成立福建师范学院,12年易名为福建师范大学并沿用至今。

以上数据出自《知乎》。

2014江西数学数学高考试卷 数学很难?

2014年普通高等学校招生全国统一考试(江西卷)

数学(理科)

一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 是的共轭复数. 若,((为虚数单位),则( )

A. B. C. D.

2. 函数的定义域为( )

A. B. C. D.

3. 已知函数,,若,则( )

A. 1 B. 2 C. 3 D. -1

4.在中,内角A,B,C所对应的边分别为,若则的面积( )

A.3 B. C. D.

5.一几何体的直观图如右图,下列给出的四个俯视图中正确的是( )

6.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,泽宇性别有关联的可能性最大的变量是( )

A.成绩 B.视力 C.智商 D.阅读量

7.阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为( )

A.7 B.9 C.10 D.11

8.若则( )

A. B. C. D.1

9.在平面直角坐标系中,分别是轴和轴上的动点,若以为直径的圆与直线相切,则圆面积的最小值为( )

A. B. C. D.

10.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是( )

二.选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分,本题共5分.在每小题给出的四个选项中,只有一项是符合题目要求的.

11(1).(不等式选做题)对任意,的最小值为( )

A. B. C. D.

11(2).(坐标系与参数方程选做题)若以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,则线段的极坐标为( )

A. B. C. D.

三.填空题:本大题共4小题,每小题5分,共20分.

12.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.

13.若曲线上点处的切线平行于直线,则点的坐标是________.

14.已知单位向量与的夹角为,且,向量与的夹角为,则=

15.过点作斜率为的直线与椭圆:相交于,若是线段的中点,则椭圆的离心率为

三.简答题

16.已知函数,其中

(1)当时,求在区间上的最大值与最小值;

(2)若,求的值.

17、(本小题满分12分)

已知首项都是1的两个数列(),满足.

(1) 令,求数列的通项公式;

(2) 若,求数列的前n项和.

18、(本小题满分12分)

已知函数.

(1) 当时,求的极值;

(2) 若在区间上单调递增,求b的取值范围.

19(本小题满分12分)

如图,四棱锥中,为矩形,平面平面.

(1)求证:

(2)若问为何值时,四棱锥的体积最大?并求此时平面与平面夹角的余弦值.

20.(本小题满分13分)

如图,已知双曲线的右焦点,点分别在的两条渐近线上,轴,∥(为坐标原点).

(1)求双曲线的方程;

(2)过上一点的直线与直线相交于点,与直线相交于点,证明点在上移动时,恒为定值,并求此定值

21.(满分14分)随机将这2n个连续正整数分成A,B两组,每组n个数,A组最小数为,最大数为;B组最小数为,最大数为,记

(1)当时,求的分布列和数学期望;

(2)令C表示与的取值恰好相等,求C发生的概率;

(3)对(2)中的C,表示C的对立,判断和的大小关系,并说明理由。