2017青海数学数学高考_青海数学高考试卷2020
1.青海省高考考什么卷
2.2017年高考全国各省市使用什么考卷
3.高考青海是几卷
4.青海历年高考状元名单
5.2017高考哪些省份使用全国卷I 2017高考哪些省份使用全国卷1
6.2017高考这样出题有何深意?
7.2017年各省高考总分分别是多少
8.青海高考外语可以选择日语吗?
1、增加了数学文化的要求。
2、在能力要求内涵方面,增加了基础性、综合性、应用性、创新性的要求,同时对能力要求进行了加细说明,使能力要求更加明确具体。
3、在现行考试大纲三个选考模块中删去《几何证明选讲》,其余2个选考模块的内容和范围都不变,考生从《坐标系与参数方程》、《不等式选讲》2个模块中任选1个作答。
总体上,这些变化对2017年高考数学考试影响不大。基于两个原因:
一是在这次高考考纲修订基本原则 “坚持整体稳定,推进改革创新;优化考试内容,着力提高质量;提前谋篇布局,体现素养导向”中,将“整体稳定”放在了首位。2015年、2016年全国数学2卷就突出了稳中求变,约有80%的试题是稳定的,只有约20%的试题是创新的,2017年高考仍然还会沿用这种思路命制试卷。
二是近两年高考试卷已先于2017年高考考纲在命题中渗透了一些变化与创新,全国数学2卷最大的变化点是,突出了社会主义核心价值观,强调了中国传统数学文化精髓。在数学文化方面,2016年高考全国2卷理科数学第8题、文科数学第9题涉及到了我国南宋著名数学家秦九韶提出的多项式求值的算法,2015年高考全国2卷文、理科数学的第8题涉及到了我国古代数学名著《九章算术》中的“更相减损术”。
这就是说,今年考纲中所提到的新要求、新变化,在两年前的高考中就已经有所体现了,所以2017年高考对我们而言变化不会很大。而第三项变化是选考题由“三选一”变为“二选一”,这将减轻学生的课业负担。
青海省高考考什么卷
一、选择题
1.平行四边形ABCD的一条对角线固定在A(3,-1),C(2,-3)两点,点D在直线3x-y+1=0上移动,则点B的轨迹方程为( )
A.3x-y-20=0 B.3x-y+10=0
C.3x-y-9=0 D.3x-y-12=0
答案:A 解题思路:设AC的中点为O,即.设B(x,y)关于点O的对称点为(x0,y0),即D(x0,y0),则由3x0-y0+1=0,得3x-y-20=0.
2.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为( )
A.1 B.2
C. -2D.3
答案:C 解题思路:当该点是过圆心向直线引的垂线的交点时,切线长最小.因圆心(3,0)到直线的距离为d==2,所以切线长的最小值是l==.
3.直线y=x+b与曲线x=有且只有一个交点,则b的取值范围是( )
A.{b||b|=}
B.{b|-1
C.{b|-1≤b<1}
D.非以上答案
答案:
B 解题思路:在同一坐标系中,画出y=x+b与曲线x=(就是x2+y2=1,x≥0)的图象,如图所示,相切时b=-,其他位置符合条件时需-1
4.若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆所作的切线长的最小值是( )
A.2 B.3
C.4 D.6
答案:C 解题思路:圆的标准方程为(x+1)2+(y-2)2=2,所以圆心为(-1,2),半径为.因为圆关于直线2ax+by+6=0对称,所以圆心在直线2ax+by+6=0上,所以-2a+2b+6=0,即b=a-3,点(a,b)到圆心的距离为
d==
==.
所以当a=2时,d有最小值=3,此时切线长最小,为==4,故选C.
5.已知动点P到两定点A,B的距离和为8,且|AB|=4,线段AB的中点为O,过点O的所有直线与点P的轨迹相交而形成的线段中,长度为整数的有( )
A.5条 B.6条
C.7条 D.8条
答案:D 命题立意:本题考查椭圆的定义与性质,难度中等.
解题思路:依题意,动点P的轨迹是以A,B为焦点,长轴长是8,短轴长是2=4的椭圆.注意到经过该椭圆的中心O的最短弦长等于4,最长弦长是8,因此过点O的所有直线与点P的轨迹相交而形成的线段中,长度可以为整数4,5,6,7,8,其中长度为4,8的各一条,长度为5,6,7的各有两条,因此满足题意的弦共有8条,故选D.
6.设m,nR,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是( )
A.[1-,1+]
B.(-∞,1-][1+,+∞)
C.[2-2,2+2]
D.(-∞,2-2][2+2,+∞)
答案:D 解题思路: 直线与圆相切,
=1,
|m+n|=,
即mn=m+n+1,
设m+n=t,则mn≤2=,
t+1≤, t2-4t-4≥0,
解得:t≤2-2或t≥2+2.
7.在平面直角坐标系xOy中,设A,B,C是圆x2+y2=1上相异三点,若存在正实数λ,μ,使得=λ+μ,则λ2+(μ-3)2的取值范围是( )
A.[0,+∞) B.(2,+∞)
C.(2,8) D.(8,+∞)
答案:B 解题思路:依题意B,O,C三点不可能在同一直线上, ·=|cos BOC=cos BOC∈(-1,1),又由=λ+μ,得λ=-μ,于是λ2=1+μ2-2μ·,记f(μ)=λ2+(μ-3)2.则f(μ)=1+μ2-2μ·+(μ-3)2=2μ2-6μ-2μ·+10,可知f(μ)>2μ2-8μ+10=2(μ-2)2+2≥2,且f(μ)<2μ2-4μ+10=2(μ-1)2+8无值,故λ2+(μ-3)2的取值范围为(2,+∞).
8.已知圆C:x2+y2=1,点P(x0,y0)在直线x-y-2=0上,O为坐标原点,若圆C上存在一点Q,使得OPQ=30°,则x0的取值范围是( )
A.[-1,1] B.[0,1]
C.[-2,2] D.[0,2]
答案:D 解析:由题知,在OPQ中,=,即=, |OP|≤2,又P(x0,x0-2),则x+(x0-2)2≤4,解得x0[0,2],故选D.
9.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分成两部分,使得这两部分的面积之差,则该直线的方程为( )
A.x+y-2=0 B.y-1=0
C.x-y=0 D.x+3y-4=0
答案:A 命题立意:本题考查直线、线性规划与圆的综合运用及数形结合思想,难度中等.
解题思路:要使直线将圆形区域分成两部分的面积之差,必须使过点P的圆的弦长达到最小,所以需该直线与直线OP垂直.又已知点P(1,1),则kOP=1,故所求直线的斜率为-1.又所求直线过点P(1,1),故由点斜式得,所求直线的方程为y-1=-(x-1),即x+y-2=0.
10.直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是( )
A. B.
C.[-, ] D.
答案:B 命题立意:本题考查直线与圆的位置关系,难度中等.
解题思路:在由弦心距d、半径r和半弦长|MN|构成的直角三角形中,由勾股定理,得|MN|=≥,得4-d2≥3,解得d2≤1,又d==,解得k2≤,所以-≤k≤.
二、填空题
11.已知直线l:y=-(x-1)与圆O:x2+y2=1在第一象限内交于点M,且l与y轴交于点A,则MOA的面积等于________.
答案: 命题立意:本题考查直线与圆的位置关系的应用,难度较小.
解题思路:联立直线与圆的方程可得xM=,故SMOA=×|OA|×xM=××=.
12.在ABC中,角A,B,C的对边分别为a,b,c.若a2+b2=c2,则直线ax-by+c=0被圆x2+y2=9所截得的弦长为________.
答案:2 命题立意:本题考查直线与圆位置关系的应用,求解弦长一般采用几何法求解,难度较小.
解题思路:圆心到直线的距离d===,故直线被圆截得的弦长为2=2=2.
13.已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足APO=BPO,其中O为原点,则点P的轨迹方程是________.
答案:(x-2)2+y2=4(y≠0) 命题立意:本题考查角平分线的性质及直接法求轨迹方程,难度中等.
解题思路:因为A(-2,0),B(1,0)两点,动点P不在x轴上,且满足APO=BPO,故点P在角APB的角平分线上,则利用PAPB=AOOB=21,设点P(x,y),则利用关系式可知=2化简可得(x-2)2+y2=4(y≠0).
14.若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为2,则m的倾斜角可以是
15° 30° 45° 60° 75°
其中正确答案的序号是________.(写出所有正确答案的序号)
答案: 解题思路:设直线m与l1,l2分别交于A,B两点,
过A作ACl2于C,则|AC|==.
又|AB|=2,ABC=30°.
又直线l1的倾斜角为45°,
直线m的倾斜角为45°+30°=75°或45°-30°=15°.
B组
一、选择题
1.已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos AFB=( )
A. B.
C.- D.-
答案:D 解题思路:联立消去y得x2-5x+4=0,解得x=1或x=4.
不妨设点A在x轴下方,所以A(1,-2),B(4,4).
因为F(1,0),所以=(0,-2),=(3,4).
因此cos AFB=
==-.故选D.
2.已知抛物线x2=4y上有一条长为6的动弦AB,则AB的中点到x轴的最短距离为( )
A. B.
C.1 D.2
答案:D 解题思路:由题意知,抛物线的准线l为y=-1,过A作AA1l于A1,过B作BB1l于B1,设弦AB的中点为M,过M作MM1l于M1,则|MM1|=,|AB|≤|AF|+|BF|(F为抛物线的焦点),即|AF|+|BF|≥6,即|AA1|+|BB1|≥6,即2|MM1|≥6, |MM1|≥3,即M到x轴的距离d≥2,故选D.
3.设双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,A是双曲线渐近线上的一点,AF2F1F2,原点O到直线AF1的距离为|OF1|,则渐近线的斜率为( )
A.或- B.或-
C.1或-1 D.或-
答案:D 命题立意:本题考查了双曲线的几何性质的探究,体现了解析几何的数学思想方法的巧妙应用,难度中等.
解题思路:如图如示,不妨设点A是第一象限内双曲线渐近线y=x上的一点,由AF2F1F2,可得点A的坐标为,又由OBAF1且|OB|=|OF1|,即得sin OF1B=,则tan OF1B=,即可得=, =,得=,由此可得该双曲线渐近线的斜率为或-,故应选D.
4.设F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,与直线y=b相切的F2交椭圆于点E,E恰好是直线EF1与F2的切点,则椭圆的离心率为( )
A. B.
C. D.
答案:C 解题思路:由题意可得,EF1F2为直角三角形,且F1EF2=90°,
|F1F2|=2c,|EF2|=b,
由椭圆的定义知|EF1|=2a-b,
又|EF1|2+|EF2|2=|F1F2|2,
即(2a-b)2+b2=(2c)2,整理得b=a,
所以e2===,故e=,故选C.
5.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )
A. B.2 C.4 D.8
答案:C 解题思路:由题意得,设等轴双曲线的方程为-=1,又抛物线y2=16x的准线方程为x=-4,代入双曲线的方程得y2=16-a2y=±,所以2=4,解得a=2,所以双曲线的实轴长为2a=4,故选C.
6.抛物线y2=-12x的准线与双曲线-=1的两条渐近线围成的三角形的面积等于( )
A. B.3 C. D.3
答案:B 命题立意:本题主要考查抛物线与双曲线的性质等基础知识,意在考查考生的运算能力.
解题思路:依题意得,抛物线y2=-12x的准线方程是x=3,双曲线-=1的渐近线方程是y=±x,直线x=3与直线y=±x的交点坐标是(3,±),因此所求的三角形的面积等于×2×3=3,故选B.
7.若双曲线-=1与椭圆+=1(m>b>0)的离心率之积大于1,则以a,b,m为边长的三角形一定是( )
A.等腰三角形 B.直角三角形
C.锐角三角形 D.钝角三角形
答案:D 解题思路:双曲线的离心率为e1=,椭圆的离心率e2=,由题意可知e1·e2>1,即b2(m2-a2-b2)>0,所以m2-a2-b2>0,即m2>a2+b2,由余弦定理可知三角形为钝角三角形,故选D.
8. F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于A,B两点.若ABF2是等边三角形,则该双曲线的离心率为( )
A.2 B. C. D.
答案:B 命题立意:本题主要考查了双曲线的定义、标准方程、几何性质以及基本量的计算等基础知识,考查了考生的推理论证能力以及运算求解能力.
解题思路:如图,由双曲线定义得,|BF1|-|BF2|=|AF2|-|AF1|=2a,因为ABF2是正三角形,所以|BF2|=|AF2|=|AB|,因此|AF1|=2a,|AF2|=4a,且F1AF2=120°,在F1AF2中,4c2=4a2+16a2+2×2a×4a×=28a2,所以e=,故选B.
9.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )
A.2 B.3
C. D.
答案:A 解题思路:设抛物线y2=4x上一动点P到直线l1和直线l2的距离分别为d1,d2,根据抛物线的定义可知直线l2:x=-1恰为抛物线的准线,抛物线的焦点为F(1,0),则d2=|PF|,由数形结合可知d1+d2=d1+|PF|取得最小值时,即为点F到l1的距离,利用点到直线的距离公式得最小值为=2,故选A.
10.已知双曲线-=1(a>0,b>0),A,B是双曲线的两个顶点,P是双曲线上的一点,且与点B在双曲线的同一支上,P关于y轴的对称点是Q.若直线AP,BQ的斜率分别是k1,k2,且k1·k2=-,则双曲线的离心率是( )
A. B. C. D.
答案:C 命题立意:本题考查双曲线方程及其离心率的求解,考查化简及变形能力,难度中等.
解题思路:设A(0,-a),B(0,a),P(x1,y1),Q(-x1,y1),故k1k2=×=,由于点P在双曲线上,故有-=1,即x=b2=,故k1k2==-=-,故有e===,故选C.
二、填空题
11.已知抛物线y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A(x1,y1)和B(x2,y2)两点,则(1)y1y2=________;(2)三角形ABF面积的最小值是________.
答案:(1)-8 (2)2 命题立意:本题主要考查直线与抛物线的位置关系,难度中等.
解题思路:设直线AB的方程为x-2=m(y-0),即x=my+2,联立得y2-4my-8=0.(1)由根与系数的关系知y1y2=-8.(2)三角形ABF的面积为S=|FP||y1-y2|=×1×=≥2.
知识拓展:将ABF分割后进行求解,能有效减少计算量.
12. B1,B2是椭圆短轴的两端点,O为椭圆中心,过左焦点F1作长轴的垂线交椭圆于P,若|F1B2|是|OF1|和|B1B2|的等比中项,则的值是________.
答案: 命题立意:本题考查椭圆的基本性质及等比中项的性质,难度中等.
解题思路:设椭圆方程为+=1(a>b>0),令x=-c,得y2=, |PF1|=. ==,又由|F1B2|2=|OF1|·|B1B2|,得a2=2bc. a4=4b2(a2-b2), (a2-2b2)2=0, a2=2b2, =.
13.已知抛物线C:y2=2px(p>0)的准线为l,过M(1,0)且斜率为的直线与l相交于点A,与C的一个交点为B.若=,则p=________.
答案:2 解题思路:过B作BE垂直于准线l于E,
=, M为AB的中点,
|BM|=|AB|,又斜率为,
BAE=30°, |BE|=|AB|,
|BM|=|BE|, M为抛物线的焦点,
p=2.
14.
如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若B1PA2为钝角,则此椭圆的离心率的取值范围为________.
答案: 解题思路:设椭圆的方程为+=1(a>b>0),B1PA2为钝角可转化为,所夹的角为钝角,则(a,-b)·(-c,-b)0, e>或e<,又0
15.在平面直角坐标系xOy中,已知双曲线C:-=1.设过点M(0,1)的直线l与双曲线C交于A,B两点,若=2,则直线l的斜率为________.
答案:± 命题立意:本题考查直线与双曲线的位置关系,难度中等.
解题思路:联立直线与双曲线,结合根与系数的关系及向量的坐标运算求解.由题意可知,直线l与双曲线的两支相交,故设直线l:y=kx+1,k,代入双曲线方程整理得(3-4k2)x2-8kx-16=0(*).设A(x1,y1),B(x2,y2),则由=2得x1=-2x2,在(*)中,利用根与系数的关系得x1+x2=,解得x2=-,y2=,代入双曲线方程整理得16k4-16k2+3=0,解得k2=,故直线l的斜率是±.
2017年高考全国各省市使用什么考卷
青海高考用的是全国2卷。
青海高考使用全国2卷,高考满分是750分,文科生考语文、文科数学、外语、文综,理科生考语文、理科数学、外语、理综。
语文:150分
文数/理数:150分
英语:150分
文综/理综:300分
提示二:备齐“两证一码一卡一表一报告”
两证:准考证、身份证;
2.一码:考试前一天的信康码(绿码),须本人签名、彩色打印;
3.一卡:考试前一天的通信大数据行程卡(不带星),须本人签名、彩色打印;
4.一表:《考前14天健康监测表暨承诺书》,须本人签名;
5.一报告:核酸检测阴性报告,须考前48小时(以采样时间为准);
强调:防疫材料“一码一卡一表一报告”须按要求于6月6号交至相关部门(在校生交至毕业学校,非在校生交至报名考区教考中心)。
积极配合防疫检查
须积极配合防疫检查,依次按核查两证→测温→消毒→安检→身份查验等流程进入考点考场。
请点击输入描述
请点击输入描述
2.进场或候考期间,须保持一米距离。在进入考点和考场时须全程佩戴口罩(除身份验证环节),进入考场就座后,可自行决定是否继续佩戴。(备用及隔离考场考生须全程佩戴口罩)
3.每场考试结束后,应按监考员的指令有序离场,保持人员间距,不得在考点内无故滞留。
4.做好防疫出行,赴考点出行时提前准备好口罩等防护用品,途中做好个人防护,与周围人群尽可能保持安全距离,尽量避免用手接触其他物品。
高考青海是几卷
2017年高考全国各省市所用考卷:
全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
全国Ⅱ卷地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆
全国Ⅲ卷地区:云南、广西、贵州、四川
完全自主命题省份 :江苏、北京、天津
部分使用全国卷省份 :
海南省:全国Ⅱ卷(语、数、英) 单独命题(政、史、地、物、化、生)
山东卷:全国Ⅰ卷(外语、文综、理综) 自主命题(语文、文数、理数)
2017年考试改革地区 :
高考改革地区:浙江、上海
考试模式:3 3,不分文理科
必考科目:语文、数学、外语,每科150分
改革后的考试具体安排如下:
外语考试:
浙江每年2次,6月和10月;
上海每年2次,1月和6月
选考科目:
浙江实行7选3,每科满分100分:思想政治、历史、地理、物理、化学、生物、信息技术(特别说明:浙江省的选考科目考试次数为2次,分别在4月和10月,外语和选考成绩2年有效。)
上海实行6选3,每科满分70分,思想政治、历史、地理、物理、化学、生命科学 。
录取方式 :
浙江
1.高考录取不分批次;
2.“专业 学校”平行志愿,按专业平行投档。
上海
1.合并本科第一、二招生批次。
2.“总分 志愿”,分学校实行平行志愿投档和录取。
2017年高考除浙江、上海因实行高考改革变化较大外,全国其他地区保持稳定,考试模式仍与2016年保持一致。
高考,一般指高等教育入学考试,现有普通高校招生考试、自学考试和成人高考三种形式。高考是考生选择大学和进入大学的资格标准,也是国家教育考试之一。
高考由教育部统一组织调度,教育部或实行自主命题的省级考试院(考试局)命题。每年6月7日、6月8日为考试日,部分省区高考时间为3天。高考成绩直接影响所能进入的大学层次,考上一本大学的核心前提就是取得优异的高考成绩。
2015年起,高考将取消体育特长生、奥赛等6项加分项目。2016年,全国940万考生参加高考。
2017年,高考全国卷考试内容调整加重对传统文化考查。全国有940万考生要参加2017高考。从6月22日开始,全国各地的高考成绩陆续出炉。2017年10月19日,教育部部长陈宝生表示,到2020年,我国将全面建立起新的高考制度。
青海历年高考状元名单
青海高考是全国统一卷。
青海高考由教育部统一命题,采用全国一卷“3+文科综合/理科综合”模式,各考6个学科,4种试卷,即报考文科的学生考:语文、数学、英语和文科综合,报考理工科的学生考:语文、数学、英语和理科综合。
青海高考科目:
1、理工类:语文、数学、外语、理科综合(物理、化学、生物)。
2、文史类:语文、数学、外语、文科综合(政治、历史、地理)。
3、外语分英语、俄语、日语、法语、德语、西班牙语六个语种,由考生任选其中一个语种参加考试。
青海高考分值:
高校招生全国统一考试总分为750分,其中语文、数学、外语各科满分均为150分(外语科目含计入总分的听力测试30分),综合科目满分为300分。
填报志愿注意事项:
1、确定合理的志愿顺序
在填报志愿时考生应该合理安排志愿的顺序。应该根据个人兴趣和实际情况选择心仪的专业和学校。要结合自身的成绩和实力,将志愿按照分数要求进行排序,优先选择符合自己条件的学校和专业。要合理安排志愿的个数,既不能过多导致分散精力,也不能过少限制选择范围。
2、了解学校和专业信息
在填报志愿之前,考生应该充分了解自己所感兴趣的学校和专业的相关信息。可以通过参观学校开放日、参加招生宣讲会、咨询学长学姐或参考学校官方网站等方式进行了解。关注学校的教学质量、师资力量、实践机会以及专业的就业前景等方面的信息。
3、注重多样性和平衡性
多样性意味着选择不同类型的学校和专业,如综合性大学、理工科学院、艺术学院等,这样可以丰富自己的知识结构和专业背景。平衡性则是指要在志愿中平衡自己的风险和收益,并充分考虑自己的特长和优势。不要盲目追求热门专业或名校,而忽视了自己的兴趣和发展潜力。
2017高考哪些省份使用全国卷I 2017高考哪些省份使用全国卷1
青海历年高考状元名单的解答如下:
2021年青海高考最高分状元数据:理科状元武家和,719分;文科状元黄天琪,638分。
知识拓展:
高校招生全国统一考试总分为750分,其中语文、数学、外语各科满分均为150分(外语科目含计入总分的听力测试30分),综合科目满分为300分。
青海省是我国高考报名人数比较少的省份。高考报名人数最少的一年是在2012年,为3.8万人,最多的一年是在2020年,为5.72万人。最大相差1.92万人,变化幅度在45.62%之间。
2022年青海省参加高考报名考生6.06万人,除去单考单招已录取以及“专升本”考生,参加全国统考的考生为4.84万人,两项人数均与去年基本持平。
青海高等职业技术学院2023年招生章程:
学院名称:青海高等职业技术学院(Qinghai Higher Vocational & Technicalnstitute)。学院代码:14520。青海高等职业技术学院为公办、全日制通高职(专科)院校。为加强对招生工作的领导,成立青海高等职业技术学院招生工作领导小组。工作领导小组下设招生宣传、纪检监察、后勤保障等工作组。
招生工作职责包括:制定招生章程、招生方案、开展招生宣传和咨询工作,实事求是地向考生和家长介绍本院情况和录取规则,根据国家核准的年度招生规模及有关规定,编制招生计划,组织实施录取工作;处理录取工作的遗留问题;完成与招生相关的其他工作。
必须是在相应批次报考我院专业目资格审查合格、体检合格、高考成绩符合所在省划定录取分数线的考生。
2017高考这样出题有何深意?
2017年高考使用全国Ⅰ卷的省份:
福建、河南、河北、山西、江西、湖北、湖南、广东、安徽。
山东省部分科目使用全国Ⅰ卷:
全国Ⅰ卷;外语、文综、理综, 自主命题:语文、文数、理数。
扩展资料:
(新课标Ⅱ卷)
2015年及其之前:贵州 甘肃 广西 青海 西藏 黑龙江 吉林 宁夏 内蒙古 新疆 云南 辽宁(综合)海南(语文 数学 英语)。
2015年增加省份:辽宁 (语文 数学 英语)。
2016年增加省份:陕西、重庆、;取消省份:广西 云南 贵州。
2018年使用省区:甘肃、青海、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、陕西、重庆、海南(语文、数学、英语)西藏2018使用的是全国三卷。
参考资料:高考试题全国卷_百度百科
2017年各省高考总分分别是多少
6月7日,2017高考拉开帷幕,第一天考查语文和数学两门科目。
2017年是“新高考”第一年。那么,今年的高考试题命制的总体思路为何,是否突出了高考的育人功能和建设核心价值观的使命,是否做到了强化关键能力和学科素养的考查、强调高考的选拔功能和教学引导作用,是否做到了着力提高命题质量,突出高考的公平性和科学性?
科学实施命题设计,落实立德树人
教育部考试中心相关负责人指出:“2017高考语文的命题重点,是以提高语用水平、塑造思维品质的关键能力标准,以提升审美境界、涵育人文精神的学科素养标准,以加强社会主义理想信念的核心价值标准,推动立德树人教育任务的实现。”
“2017年高考语文把立德树人贯穿于命题工作全过程,突出高考的思想性和育人功能,彰显语文科在高考科目体系中所独具的‘以文化人、以文育人’的优势功能。”中国教育在线总编辑陈志文分析。记者采访中了解到,全国卷3道写作试题的命制均突出了高考的思想性和育人功能。
全国Ⅰ卷作文“中国关键词”,引导考生用两三个关键词来呈现他们所认识的中国,帮助外国青年读懂中国。专家分析,“试题意在引导考生正确认识中国特色,认清世界和中国的发展大势,向外国青年‘讲好中国故事’。写作要求将‘呈现你所认识的中国’作为明确指令,鼓励考生理性思辨,畅所欲言。”还有专家指出,北京卷作文“共和国,我为你拍照”,引导考生将个人命运与共和国发展紧密结合。
5万名上海考生,是上海实施全新高考改革方案的第一批考生。对于上海的作文题,上海交通大学人文学院中文系主任张中良教授认为,“预测”这个题目考生可以从个人写到社会,不会千篇一律、大同小异:“比如大到可以写行业、写地域等的预测问题。例如在大的视角看,线上电商如何冲击实体店等;又如自己家乡、所在城市,如何预测其发展之路。”
今年的语文命题还为考生发挥批判性思维提供了空间。“比如由关键词‘大熊猫’延伸到动物乃至生态保护的迫切,借‘空气污染’论述对创新、协调、绿色、开放、共享发展理念的呼唤。考生可以直面发展中的问题,正视前进中的矛盾。”有专家分析。
聚焦优秀传统文化,彰显文化自信
“突出中华优秀传统文化的考查重点、全面彰显文化自信,不仅是语文科的应有之义,更是优势和职责所在。”教育部考试中心相关负责人说。
据介绍,今年语文命题材料选取着重于展示传统文化中的优秀品德情操。全国卷名篇默写中,庄子《逍遥游》、荀子《劝学》、曹操《观沧海》等分别呈现出自我超越、自省好学、乐观进取的优良品质。文言阅读中,浙江卷引用《论语》中孔子与子贡、颜渊的对话,引导考生品评古人好学勤勉等品质。
今年语文命题还在材料主题规划方面力求让传统照进现实。如全国Ⅱ卷论述类文本阅读“青花瓷兴起”,青花瓷崛起是大航海时代技术创新与全球文明交融的硕果,题目引导考生了解古代丝绸之路的重大意义,进而对当今的“一带一路”倡议有更深了解。
数学命题在展示传统文化方面也着力很多。“2017年数学试卷通过多种渠道渗透数学文化,有的通过数学史展示数学文化的民族性与世界性;有的通过向考生揭示知识产生的背景、形成的过程,体现数学既是创造的、发现的,也是不断发展的;有的通过对数学思维方法的总结、提炼,呈现数学的思想性。”有专家分析说。比如全国Ⅱ卷第3题考查等比数列,试题从我国古代数学名著《算法统宗》引入,然后通过诗歌提出数学问题,阐明试题的数学史背景。全国Ⅰ卷第2题以我国太极图中的阴阳鱼为原型,设计几何概型以及几何概率计算问题。浙江卷第11题以我国古代数学家刘徽创立的割圆术为背景,设计在圆内计算正六边形的面积问题,使考生深刻理解到中华民族优秀传统文化。
考查关键能力和学科素养,注重应用能力
“2017年数学科高考以考生现实生活的问题为背景设置试题,要求考生应用数学原理和数学工具解决实际问题。体现了数学在解决实际问题中的作用,符合高考改革中加强应用性、实践性的特点。”教育部考试中心相关负责人说。
该负责人介绍,2017年数学试卷采用大题、小题结合的方式,全面、深入考查学生的应用能力。全国Ⅱ卷第19题以水产品养殖方法为背景,设计了根据样本数据分析比较新、旧养殖方法产量的问题。试题的第一问设计为根据直方图估计某事件的概率,第二问设计为根据整理的数据进行随机变量间独立性的检验,第三问设计为根据直方图,估计总体中位数,灵活地考查了概率与统计知识。天津卷文科第16题以电视连续剧播放为背景,考查线性规划知识解决实际问题的能力,以及抽象概括和运算求解能力。
今年,在上海和浙江进行的综合改革试点中,首次命制不分文理的数学试卷。“两省市的试卷更强调各类考生必须具备的数学核心素养。无论是常规题还是创新题,是数学问题还是应用问题,都设计出自然合理的情境、控制情境的抽象程度,力图使考生能正确理解题意。”有专家分析。
“在试卷文字总量保持基本稳定的前提下,今年高考语文将文学类与实用类文本均设为阅读必做题,对思维方式不同、素养构成有别的考生形成了全方位考查。而信息筛选、逻辑分析、审美鉴赏、语言运用等能力的全面覆盖,将有利于语文能力素养更为全面的考生脱颖而出。”深圳中学特级教师王木森分析。
在张家口市第一中学特级教师尤立增看来,把论述类、实用类和文学类文本均设为必考内容,其实是“四两拨千斤”,“将会扭转语文教学一线因应试而产生的偏差,促使语文基础教育加强对学生实用文本阅读能力与文学艺术素养的全面重视。”
展现高考改革成果,引导一线教学
2017高考语文试卷的客观题总的分值相应增加了14分。“通过调整,考生的书写总量下降了,但阅读总量尤其是思维含量并未降低,试卷的整体难度与往年大体持平。选择题主要考查信息筛选、综合分析、概括理解、文本鉴赏、语言积累运用等方面的能力,目标更明确,重点更清晰。尤其是多项选择题的增加,可以进一步拉开区分度,更好地发挥考试的选拔功能。”教育部考试中心相关负责人说。
同时,2017高考语文还加强了语言运用方面的考查。题型上增加了表达得体和逻辑推断等测试。据该负责人分析,这样一方面使得命题基础性、区分度更为突出,另一方面也将引领一线语文教学,促进语文学科建设。比如考查逻辑推断,就向中小学语文教育释放了清晰的信号:学校应该凸显语言学习及运用,强化对学生思维能力的培养,帮助学生将课内的“学得”与课外的“习得”学用并举。
上海的“新高考”也为原先的教学秩序提供新的参考。参加“新高考”的考生,一进入高中就被要求学会主动选择,如何发挥自己的学科优势和特长,再对照报考高校提前发布的相关专业的招考科目要求,从政治、历史、地理、物理、化学、生物6门科目中选出参加等级考的3门科目,还要参加大量的研究型学习和科创活动、社会实践。
“针对上海学生在PISA(国际学生评估项目)测试中反映出的应用类文体阅读写作能力不强等问题,这两年,我们在语文教学中增加了科技类、图表式说明文的教学;针对在网络语言环境中长大的这一代孩子的实际,也加强了对于使用得体、规范的汉语表达训练。”华东师范大学第二附属中学高三语文教师骆蔚说。
“今年语文的阅读量增加了8%左右,鼓励学生不仅要精读、细读,还要大量阅读。因为阅读量上不去,思维能力就上不去。这样的命题思路会对一线教学产生很好的导向作用。”北京大学中文系教授温儒敏说。
青海高考外语可以选择日语吗?
2017年高考已经结束了,那么2017年高考总分多少分?各科的总分都是多少?下面是我整理的2017年各省高考总分,希望能给大家带来帮助!
2017年各省高考总分
就全国的形式来讲,大部分地区的总分值还是一样的,如:安徽、北京、福建、甘肃、广东、广西、贵州、河北、河南、黑龙江、湖北、湖南、吉林、江西、辽宁、内蒙、宁夏、青海、山东、山西、陕西、四川、天津、西藏、新疆、云南、重庆等27个省市还是750分满分。各科的分值详情如下:语文150分,数学150分,英语150分,文综/理综300分。
个别改革地区的分值详情需要大家做详细的了解,比如江苏、上海、浙江和海南这4个地区:
浙江地区的高考总分:
上海和浙江地区2017年采用的是3+3考试模式,即3门必考科目(语文、数学、英语)+选考科目,我们先来看浙江地区的总分:
其中语文、数学和外语三科满分各为150分,其中英语笔试满分120分,英语听力考试满分30分;综合(文/理)满分300分;自选模块满分60分;技术满分100分,由通用技术和信息技术两科目成绩按各占50%的比例合成。
需要特别提醒大家的是浙江的总分根据大家的选择而有所差异,即考生文化成绩总分按报考(含兼报)的不同考试类别分别合成。文理科一类为“3+综合+自选模块”的总分,满分为810分;二类为“3+综合”的总分,满分为750分;三类为“3+技术”的总分,满分为550分。
上海地区的高考总分:
2017年上海高考成绩满分660分,各科的分值详情是这样的哦:语文、数学(文/理)、外语满分均为150分,政治、历史、地理、物理、化学、生物任选3门:每门70分。
江苏地区的高考总分:
江苏同样采用的是必考+选考模式,其中统考科目为语文、数学、外语三门,各科分值设定为:语文160分,数学160分,外语120分,共440分。语文、数学分别另设附加题40分,总分480分。
选测科目各科满分为120分,按考生成绩分布分为A+、A、B+、B、C、D六个等级。
海南地区的高考总分:
2017年海南的总分以900分的满分当之无愧的位据全国首位,语文、数学(文)、数学(理)、英语等科目的满分值均为150分,其中,英语科分听力和笔试两部分,笔试部分满分值为120分,听力部分满分值为30分,听力成绩计入英语科总分。政治、历史、地理、物理、化学、生物等科目的满分值均为100分,
先说结论,理论上是可以的。
但是具体安排,需要你打电话去当地的的教育系统,这个非常重要,看好,非常重要。
下面是17年的高考规定:
青海省教育考试院发布的《2017普通高等学校考试招生教育考试规定和通知》,今年青海高考总成绩满分为750分。
考试科目和分值如下:文史类:语文、数学(文)、外语、文科综合(政治、历史、地理合卷)。理工类:语文、数学(理)、外语、理科综合(物理、化学、生物合卷)。
外语分英语、俄语、日语、法语、德语、西班牙语等6个语种,由考生任选一个语种参加考试。
语文、数学、外语每科满分为150分,文科综合、理科综合每科满分为300分。总分750分。
数据参考:青海省教育考试院发布的《2017年青海普通高等学校招生考试工作规定》。
全文如下:我省普通高等学校招生全国统一考试,使用教育部统一命题试卷,新课标方案。
考试科目和分值如下:文史类:语文、数学(文)、外语、文科综合(政治、历史、地理合卷)。
理工类:语文、数学(理)、外语、理科综合(物理、化学、生物合卷)。
外语分英语、俄语、日语、法语、德语、西班牙语等6个语种,由考生任选一个语种参加考试。
语文、数学、外语每科满分为150分,文科综合、理科综合每科满分为300分。
“民考民”考生分藏汉双语、蒙文两类。两类考生的民族汉考(MHK三级)由教育部命题、制卷、评卷,满分为150分。
藏汉双语考生的数学、综合科目提供藏、汉文对照试题,由考生自行选择用藏文或汉文答题;藏语文试题由本省命制,满分为150分,用藏文答题。
蒙文考生除外语、民族汉考(MHK三级)外,其余科目为全蒙文试题,用蒙文答题。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。