2017天津高考数学解析_2017天津高考数学解析视频
1.怎样评价2017年理科高考数学试卷
2.2017年天津高考难度系数,今年天津高考难不难
3.2017全国高考数学(理I)20题为了判断f(x)的第二个零点,取x=ln(3/a-1)如何想到?
4.2017年高考数学平面向量必考知识点
5.高考数学一轮复习命题思路评析?
17.(12分)
△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为?
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长
18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.
19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网
(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997?4,0.997?416≈0.959?2,.
20.(12分)
已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
21.(12分)
已知函数=ae?^x+(a﹣2)e^x﹣x.
(1)讨论的单调性;
(2)若有两个零点,求a的取值范围.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4-4,坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.
(1)若a=-1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
23.[选修4—5:不等式选讲](10分)
已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.
怎样评价2017年理科高考数学试卷
2017年我市高考已顺利结束。本年度高考天津卷呈现出什么样的特点?我们又能从中解读出什么样的信息呢?记者走访了市教育招生考试院命题专家和部分中学一线教师,对今年天津高考各科试卷进行简要评述。
坚持立德树人,体现学科综合能力和核心素养,是今年天津高考试卷的主要特点
2017年高考天津卷遵循教育部确定的“立德树人、服务选拔、导向教学”的命题总原则;以高考天津卷《考试说明》和教材为依据,围绕“必备知识、关键能力、学科素养、核心价值”四个层级的考查目标,注重考查学生的学科能力、学科核心素养和进一步学习的潜能;体现了“基础性、综合性、应用性、创新性”的考查要求。
“立德树人”是天津卷多年来一以贯之的一条主线。今年各学科试卷突出高考的思想性和育人功能,注重传递正面的价值观念。试题依托相应学科知识,从多视角、多层面对社会主义核心价值观、中华优秀传统文化、依法治国理念和创新精神进行考查。试题素材呼应国家发展战略,贴近时政热点、社会生活、生产实践和科技发展,“五大发展理念”“一带一路”“京津冀协同发展”“第十三届全运会”等主题出现在多个学科的试题中。
高考是选拔性考试,为高等学校选拔人才服务。命题专家们认为,今年各学科试卷保持了“平实、稳定、厚重、大气”的风格,不仅考查了考生的阅读能力、理解能力、逻辑思维能力、分析综合能力、问题解决能力,更考查了考生的学科能力、学科素养和进一步学习的潜能。一线教师们认为,今年高考试题新意多,打破了不少习惯的“套路”;试卷整体难度适中,容易题、中等难度题和难题的分值比例合理,区分功能良好,有利于不同程度的考生充分发挥水平。
高考试卷是中学教学的“风向标”。今年各学科试卷均比较好地兼顾了基础性与综合性,全面考查和重点考查相结合,没有“超纲”的试题。如数学试题对中学数学的主干知识保持了较高的考查比例;英语试题考查语言结构知识、词汇、语块、语用以及听力、阅读、写作等技能所涵盖的多项微技能,无过分强调死记硬背语法规则的试题;物理试题涉及力学、电磁学、光学、近代物理等主干知识,覆盖《考试说明》中90%的主题;化学试题涉及基本概念、基本理论、常见元素单质及其重要化合物、有机化学基础、化学实验、基本化学计算等主干知识,知识点覆盖面占83%;生物试题涉及细胞、遗传、生态系统、基因工程及生物实验操作等主干知识,覆盖79%的教材章节。命题专家表示,今年各学科试题强调基础知识和关键能力之间的联系与交汇,出现了一些新的试题呈现方式,渗透了学科核心素养的要求,将对我市中学教学产生良好的导向作用。(众 维 插 画 提 供)
2017年天津高考难度系数,今年天津高考难不难
试题与去年相比试卷命朴实,平易近人,试卷贴近考生,符合师生期望,整体中较为常规。
试题中不少题目让师生一见如故,平和亲切,重视考查学生的基本数学素养,全盘兼顾知识点、思想方法与能力的考查,关注数学的应用意识与创新意识,除了具有良好的选拔功能,对中学数学教学也具有很好的导向作用,主要表现在注重基础,重视数学素养,加强数学应用与数学思维能力的培养。
注重基础2017年全国高考文科数学Ⅰ卷对基础知识与基础技能的重全面,又突出重点,贴切教学实际,试卷中的每种题型均设置了数量较多的基础题,许多试题都是单一知识点或是最基础的知识交汇点上设置,如1、2、3、6、7、10、11、13、14、15占选择填空题的比例较高达到63﹪.
数学素养方面:
试卷的第12题以解析几何中的椭圆为背景考察了对椭圆的焦点在x,y坐标轴上进行的分类讨论思想,第21题的导数题求导后对a的正负进行的分类讨论思想。第2题以我国太极图中的阴阳鱼为原型,设计几何概型以及几何概率计算问题,贴近考生生活,通过本题的求解,使考生感受中华传统优秀文化的民族性与世界性,深刻地认识到中华民族优秀传统文化的博大精深和源远流长,激励他们创造出更加辉煌的成就。
试卷重视数学知识的应用:
背景来自于学生所能理解的生活现实与社会现实,如19题以生产零件为命题背景,将数学知识与实际问题相结合,考查考生的阅读理解能力以及应用数学知识解决实际问题的能力,体现了数学的应用价值与人文特色,其中知识难度并不复杂,主要在计算能力上的要求较高。对考生的阅读理解能力、数据处理计算能力,理性思维进行了全方面的考查。
综合性与创新性:
为了提高区分度,试卷在注重基础的同时,也充分考查学生的创新意识,试题稳中有变,如第12题,解析几何知识为依托,结合三角函数考查学生对知识点的细节分析能力,给中等学生提供了展示舞台。再如第16题,对学生的空间想象能力,计算能力,分析问题的能力都有较高的要求,对于基础比较好的同学有一定的优势。具有较好的区分度,体现了高考的选拔性。再如第21题,第一问主要考察学生的分类讨论思想,属于学生熟悉的题型,但是对导函数进行因式分解具有一定的难度,第二问比较容易入手,由第1问的讨论学生需要讨论求最小值,难点在于求解不等式,需要学生有较高综合分析能力以及一定的计算能力的要求,这也充分体现了综合性与创新性的特点.当然本题也给优秀学生提供了发挥的平台。
从今年的试卷总体情况来看,新课标卷贴近中学教学实际,注重思想与方法的考察,体现了数学的基础性,应用性和工具性的学科特色,善于应用知识之间的内在联系构建试卷的主体结构,命题更加科学。
2017全国高考数学(理I)20题为了判断f(x)的第二个零点,取x=ln(3/a-1)如何想到?
研读《2011年普通高等学校招生全国统一考试天津卷说明》可以发现,今年数学学科高考变化的地方在于试卷结构。全卷包括Ⅰ卷和Ⅱ卷,Ⅰ卷为选择题,Ⅱ卷为非选择题。试卷采用单项选择题、填空- 题和解答题。选择题的数量由往年的10个改为8个,每题分值还是5分,共计40分;填空题的数量还是6个,每题分值由往年的4分变为5分,共计30分;解答题的数量还是6个,前4小题每题分值由往年的12分变为13分,后两个小题的分值还是14分,共计30分,全卷合计150分。简单说就是今年高考数学试卷比往年少了两道选择题,多出来的10分,6个填空题每个加1分,前4个解答题每个加1分。 那么这种试卷结构的改变会对试卷带来怎样的变化呢?我们先看选择题,从往年的统计数据来看10个选择题中,简单题、中等题和难题的比例一般是6:3:1,整体得分率应该在0.75左右,今年改为8个选择题,预计简单题、中等题和难题的比例是5:2:1,整体得分率保持不变。再看填空题,往年6个填空题中,简单题、中等题和难题的比例一般是3:2:1,整体得分率应该在0.5至0.6之间,由此可见加在填空题上的6分有5分是加在简单题和中等难度题上。最后再看解答题,解答题的前三个题一般情况下应该是三角函数、概率和立体几何题,这三个题的难度系数都在0.7以上,属简单题,第四题考查的一般是解析几何或导数等内容难度系数一般在0.4以上,属中等难度题。由以上的分析可以看出,分配到填空题和解答题的10分中,有6分加在简单题上,3分加在中等难度题上,1分加在难题上。 我们在高考复习中应该怎样应对这种变化呢?给同学们以下几条建议: ⒈强化数学基础知识与基本方法的落实 由前面的分析可以看出,分配到填空题和解答题的10分中有9分加在简单题和中等难度题上,这些分数都是用来考查基础知识与基本方法的,所以在复习的过程中要注重双基的落实。 ⒉重点知识重点复习,高考热点高度重视 注重主干知识的复习:代数着重考查函数学、数列、不等式、三角等主要内容;立体几何着重考查线面关系、空间角、面积和体积的计算,理科着重坐标方法(即向量)的应用;解析几何着重考查直线与圆锥曲线的位置关系;向量、概率、统计、导数等新增加内容的考查,既保持了较高的比例,也达到了必要的深度。这些主干知识己成为高考命题的主体。 根据往年高考数学命题的特点,对数学基础知识的考查,虽然不刻意追求知识点的百分比,但对支撑数学学科知识体系的主干知识,考查时保证较高的比例,即重点知识重点考查。由此可以预见,2011年高考数学命题仍会强化主干知识,突出新增内容。 ⒊抓本靠纲,把握方向 (1)重视《考试大纲》与《考试说明》(以2011年为准)的学习,这两本书是高考命题的依据,是回答考什么、考多难、怎样考这三个问题的具体规定和解说。 (2)重视课本的示范作用。高三复习时间紧,任务重,内容多,但绝不能因此而脱离教材,相反,要紧扣大纲,抓住教材,在总体上把握教材,明确每一章、每一节的知识在整体中的地位的作用。纵观近几年的高考试题,每年的试题都与教材有着密切的联系,有的是将教材中的题目略加修改、变形后作为高考题,还有的是将教材中的题目合理拼凑、组合作为高考题。教材中还蕴涵着大量的数学思想方法和解题技巧,以《数列》为例,其中推导等差数列前n项和公式用到了“倒序相加法”,推导等比数列前n项和公式用到了“错位相减法”及分类讨论的数学思想。 ⒋注重应试技巧的训练 虽然我们不能做考试的奴隶,但适当的考试训练是必不可少的,在平时的复习考试中应做好以下几点: ⑴容易题争取不丢分——规范表述少跳步; ⑵中等题争取少丢分——得分点处写清楚; ⑶较难题争取多拿分——知道一点写一点; ⑷克服“会而不对,对而不全”的问题; ⑸正确处理难题与容易题的关系; ⑹学会分配考试时间。 河西教育中心张光 Tags:高考辅导2011天津高考说明解读
2017年高考数学平面向量必考知识点
f'(x)=2ax+(2-a)-1/x
=(2ax^2+(2-a)x-1)/x
=(2x-1)(ax+1)/x
a>1
令f'(x)>=0
x<=-1/a或x>=1/2
定义域是x>0
∴x>=1/2
增区间是[1/2,+∞),减区间是(0,1/2]
当1/a>=1/2时
f(x)在区间[1/a,1]内的最大值
=f(1)
=a+2-a-0
=2不是ln3
∴1/a<1/2
a>2
f(x)在区间[1/a,1]内的最大值
=f(1/a)
=a*1/a^2+(2-a)/a-ln(1/a)
=1/a+2/a-1+lna
=3/a-1+lna
=ln3
∴a=3符合a>2
综上a=3
如果您认可我的回答,请点击“为满意答案”,祝学习进步!
高考数学一轮复习命题思路评析?
平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。以下是我为您整理的关于2017年高考数学平面向量必考知识点的相关资料,希望对您有所帮助。
高考数学必考知识点平面向量概念:
(1)向量:既有大小又有方向的量。向量不能比较大小,但向量的模可以比较大小。
(2)零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行。
(3)单位向量:模为1个单位长度的向量
(4)平行向量:方向相同或相反的非零向量
(5)相等向量:长度相等且方向相同的向量
高考数学必考知识点平面向量数量积解析
1、平面向量数量积:已知两个非零向量a、b,那么|a||b|cos?(?是a与b的夹角)叫做a与b的数量积或内积,记作a?b。零向量与任意向量的数量积为0。数量积a?b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos?的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a?b=x1?x2+y1?y2
2、平面向量数量积具有以下性质:
1、a?a=|a|2?0
2、a?b=b?a
3、k(a?b)=(ka)b=a(kb)
4、a?(b+c)=a?b+a?c
5、a?b=0<=>a?b
6、a=kb<=>a//b
7、e1?e2=|e1||e2|cos?
高考数学必考知识点平面向量加法解析
已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。
注:向量的加法满足所有的加法运算定律,如:交换律、结合律。
高考数学必考知识点平面向量减法解析
1、AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、指被减。
-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。
平面向量公式汇总
1、定比分点
定比分点公式(向量P1P=?向量PP2)
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 ?,使 向量P1P=?向量PP2,?叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+?OP2)(1+?);(定比分点向量公式)
x=(x1+?x2)/(1+?),
y=(y1+?y2)/(1+?)。(定比分点坐标公式)
我们把上面的式子叫做有向线段P1P2的定比分点公式
2、三点共线定理
若OC=?OA +?OB ,且?+?=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
[编辑本段]向量共线的重要条件
若b?0,则a//b的重要条件是存在唯一实数?,使a=?b。
a//b的重要条件是 xy'-x'y=0。
零向量0平行于任何向量。
[编辑本段]向量垂直的充要条件
a?b的充要条件是 a?b=0。
a?b的充要条件是 xx'+yy'=0。
零向量0垂直于任何向量.
设a=(x,y),b=(x',y')。
3、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
4、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
AB-AC=CB. 即?共同起点,指向被减?
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
5、数乘向量
实数?和向量a的乘积是一个向量,记作?a,且∣?a∣=∣?∣?∣a∣。
当?>0时,?a与a同方向;
当?<0时,?a与a反方向;
当?=0时,?a=0,方向任意。
当a=0时,对于任意实数?,都有?a=0。
注:按定义知,如果?a=0,那么?=0或a=0。
实数?叫做向量a的系数,乘数向量?a的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣?∣>1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上伸长为原来的∣?∣倍;
当∣?∣<1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上缩短为原来的∣?∣倍。
数与向量的乘法满足下面的运算律
结合律:(?a)?b=?(a?b)=(a?b)。
向量对于数的分配律(第一分配律):(?+?)a=?a+?a.
数对于向量的分配律(第二分配律):?(a+b)=?a+?b.
数乘向量的消去律:① 如果实数?0且?a=?b,那么a=b。② 如果a?0且?a=?a,那么?=?。
6、向量的的数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0?〈a,b〉?
定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a?b=x?x'+y?y'。
向量的数量积的运算律
a?b=b?a(交换律);
(?a)?b=?(a?b)(关于数乘法的结合律);
(a+b)?c=a?c+b?c(分配律);
向量的数量积的性质
a?a=|a|的平方。
a?b 〈=〉a?b=0。
|a?b|?|a|?|b|。
7、向量的数量积与实数运算的主要不同点
(1)向量的数量积不满足结合律,即:(a?b)?c?a?(b?c);例如:(a?b)^2?a^2?b^2。
(2)向量的数量积不满足消去律,即:由 a?b=a?c (a?0),推不出 b=c。
(3)|a?b|?|a|?|b|
(4)由 |a|=|b| ,推不出 a=b或a=-b。
8、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a?b。若a、b不共线,则a?b的模是:∣a?b∣=|a|?|b|?sin〈a,b〉;a?b的方向是:垂直于a和b,且a、b和a?b按这个次序构成右手系。若a、b共线,则a?b=0。
(1)向量的向量积性质:
∣a?b∣是以a和b为边的平行四边形面积。
a?a=0。
a‖b〈=〉a?b=0。
(2)向量的向量积运算律
a?b=-b?a;
(?a)?b=?(a?b)=a?(?b);
(a+b)?c=a?c+b?c.
注:向量没有除法,?向量AB/向量CD?是没有意义的。
(3)向量的三角形不等式
∣∣a∣-∣b∣∣?∣a+b∣?∣a∣+∣b∣;
① 当且仅当a、b反向时,左边取等号;
② 当且仅当a、b同向时,右边取等号。
∣∣a∣-∣b∣∣?∣a-b∣?∣a∣+∣b∣。
① 当且仅当a、b同向时,左边取等号;
一、落点准确,考查全面
2017年试卷落点准确,稳定考查高中数学主干知识,全面覆盖基础知识,注意传统问题和注重通性通法,无偏题怪题。对《教学指导意见》中新增的知识点,以考查基础为主,试题还体现了对中国数学传统文化的关注。
二、起点较低,坡度缓慢
试卷入口宽,不同题型的试题都起点较低,选择题和填空题都加强对基础知识的考查,要求理解基本概念、掌握基本运算。解答题设问从基础出发,层层递进,梯度恰当。如第19题证明平行关系为寻找线面角铺设了道路,第20题求出导函数为求取值范围架设了桥梁,第22题的(1)(2)问为第(3)问的解决搭建了台阶。
三、强化概念,关注重点
试卷考查了三角函数、数列、立体几何、解析几何、函数与导数等高中数学基础知识,准确把握了高中数学的重点。
试题注重对数学概念的考查。如第8题考查了期望和方差的基本概念,第12题考查复数的基本运算。试题也要求能看清问题的本质,进行合理的转化。如第9题和第10题,都是从图形中寻找到问题的本质,不同要求的问题合理搭配,有效提高区分度。
四、题型稳定,叙述清楚
试卷题型稳定,对选择题数量进行了微调,增加了基础题,细化了分值,增加得分点,保留了填空题的多空形式,在不增加计算量的基础上,增加了中间分值。各题型功能明确,选择题和填空题以考查基础知识为主,解答题考查运算求解和推理论证能力。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。