1.高三数学重要知识点整理

2.2023新高考数学会难吗

3.黑龙江高考数学难吗

4.成人高考高数考什么内容?

5.数学高考都有哪些是考点?

简易逻辑题大全及答案,简易逻辑高考题

成人高考数学考试内容如下:

一、理工农医类。

考试范围包括代数、三角、平面解析几何、立体几何、概率与统计五个部分。在实际考试中,这五个部分内容占试卷比例分别为45%、15%、20%、10%和10%。

二、文史财经类。

考试范围为代数、三角、平面解析几何、概率与统计四个部分。在实际考试中,这四个部分内容占试卷比例分别为55%、15%、20%和10%。

1、代数部分,考试内容有集合和简易逻辑、函数、不等式和不等式组、数列、导数和复数等(文史财经没有复数)。

2、三角部分,有三角函数及其有关概念、三角函数式的变换、三角函数的图像和性质、解三角形等。

3、平面解析几何部分,有平面向量、直线、圆锥曲线等。

4、立体几何部分,有直线和平面、空间向量、多面体和旋转体等(文史财经没有立体几何部分)。

5、概率与统计初步部分,有概率初步、统计初步等,理工农医类包含排列、组合与二项式定理,文史财经类包含排列、组合。

学习方法:

代数历来是考试中的重点,而函数知识又是代数部分的重中之重。要掌握函数的概念,会求常见函数的定义域及函数值,会用待定系数法求函数解析式,会对函数的奇偶性和单调性进行判定。

函数的重点是一次函数、二次函数、指数函数、对数函数的图象和性质。数列是代数部分的又一个重要内容。导数及其应用是近两年考试中的一个突出重点,复习的基本策略是注重运算,强调应用。

在理解三角函数及有关概念的基础上,要掌握三角函数式的变换,包括同角三角函数之间的基本关系式,三角函数的诱导公式,两角和两角差的三角函数公式,以及二倍角的正弦、余弦、正切公式,并用公式进行计算、化简。

高三数学重要知识点整理

数学高考基础知识、常见结论详解

一、 *** 与简易逻辑:

一、理解 *** 中的有关概念

(1) *** 中元素的特征: 确定性 , 互异性 , 无序性 .

*** 元素的互异性:如: , ,求 ;

(2) *** 与元素的关系用符号 , 表示.

(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 .

(4) *** 的表示法: 列举法 , 描述法 , 韦恩图 .

注意:区分 *** 中元素的形式:如: ; ; ; ; ;

(5)空集是指不含任何元素的 *** .( 、 和 的区别;0与三者间的关系)

空集是任何 *** 的子集,是任何非空 *** 的真子集.

注意:条件为 ,在讨论的时候不要遗忘了 的情况.

如: ,如果 ,求 的取值.

二、 *** 间的关系及其运算

(1)符号“ ”是表示元素与 *** 之间关系的,立体几何中的体现 点与直线(面)的关系 ;

符号“ ”是表示 *** 与 *** 之间关系的,立体几何中的体现 面与直线(面)的关系 .

(2) ; ;

(3)对于任意 *** ,则:

① ; ; ;

② ; ;

; ;

③ ; ;

(4)①若 为偶数,则 ;若 为奇数,则 ;

②若 被3除余0,则 ;若 被3除余1,则 ;若 被3除余2,则 ;

三、 *** 中元素的个数的计算:

(1)若 *** 中有 个元素,则 *** 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 .

(2) 中元素的个数的计算公式为: ;

(3)韦恩图的运用:

四、 满足条件 , 满足条件 ,

若 ;则 是 的充分非必要条件 ;

若 ;则 是 的必要非充分条件 ;

若 ;则 是 的充要条件 ;

若 ;则 是 的既非充分又非必要条件 ;

五、原命题与逆否命题,否命题与逆命题具有相同的 ;

注意:“若 ,则 ”在解题中的运用,

如:“ ”是“ ”的 条件.

六、反证法:当证明“若 ,则 ”感到困难时,改证它的等价命题“若 则 ”成立,

步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;3、由矛盾判断假设不成立,从而肯定结论正确.

矛盾的来源:1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题.

适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时.

正面词语 等于 大于 小于 是 都是 至多有一个

否定

正面词语 至少有一个 任意的 所有的 至多有n个 任意两个

否定

二、函数

一、映射与函数:

(1)映射的概念: (2)一一映射:(3)函数的概念:

如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个.

函数 的图象与直线 交点的个数为 个.

二、函数的三要素: , , .

相同函数的判断方法:① ;② (两点必须同时具备)

(1)函数解析式的求法:

①定义法(拼凑):②换元法:③待定系数法:④赋值法:

(2)函数定义域的求法:

① ,则 ; ② 则 ;

③ ,则 ; ④如: ,则 ;

⑤含参问题的定义域要分类讨论;

如:已知函数 的定义域是 ,求 的定义域.

⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定.如:已知扇形的周长为20,半径为 ,扇形面积为 ,则 ;定义域为 .

(3)函数值域的求法:

①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;

②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;

④换元法:通过变量代换转化为能求值域的函数,化归思想;

⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;

⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;

⑦单调性法:函数为单调函数,可根据函数的单调性求值域.

⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域.

求下列函数的值域:① (2种方法);

② (2种方法);③ (2种方法);

三、函数的性质:

函数的单调性、奇偶性、周期性

单调性:定义:注意定义是相对与某个具体的区间而言.

判定方法有:定义法(作差比较和作商比较)

导数法(适用于多项式函数)

复合函数法和图像法.

应用:比较大小,证明不等式,解不等式.

奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系.f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;

f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数.

判别方法:定义法, 图像法 ,复合函数法

应用:把函数值进行转化求解.

周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期.

其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.

应用:求函数值和某个区间上的函数解析式.

四、图形变换:函数图像变换:(重点)要求掌握常见基本函数

五、反函数:

(1)定义:

(2)函数存在反函数的条件: ;

(3)互为反函数的定义域与值域的关系: ;

(4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域).

(5)互为反函数的图象间的关系: ;

(6)原函数与反函数具有相同的单调性;

(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数.

如:求下列函数的反函数: ; ;

七、常用的初等函数:

(1)一元一次函数: ,当 时,是增函数;当 时,是减函数;

(2)一元二次函数:

一般式: ;对称轴方程是 ;顶点为 ;

两点式: ;对称轴方程是 ;与 轴的交点为 ;

顶点式: ;对称轴方程是 ;顶点为 ;

①一元二次函数的单调性:

当 时: 为增函数; 为减函数;当 时: 为增函数; 为减函数;

②二次函数求最值问题:首先要采用配方法,化为 的形式,

Ⅰ、若顶点的横坐标在给定的区间上,则

时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;

时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;

Ⅱ、若顶点的横坐标不在给定的区间上,则

时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得;

时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得;

有三个类型题型:

(1)顶点固定,区间也固定.如:

(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外.

(3)顶点固定,区间变动,这时要讨论区间中的参数.

③二次方程实数根的分布问题: 设实系数一元二次方程 的两根为 ;则:

根的情况

等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根

充要条件

注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况.

(3)反比例函数:

(4)指数函数:

指数运算法则: ; ; .

指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和01和00)是等比数列.

25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列.

26. 在等差数列 中:

(1)若项数为 ,则

(2)若数为 则, ,

27. 在等比数列 中:

(1) 若项数为 ,则

(2)若数为 则,

四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等.关键是找数列的通项结构.

28、分组法求数列的和:如an=2n+3n

29、错位相减法求和:如an=(2n-1)2n

30、裂项法求和:如an=1/n(n+1)

31、倒序相加法求和:如an=

32、求数列{an}的最大、最小项的方法:

① an+1-an=…… 如an= -2n2+29n-3

② (an>0) 如an=

③ an=f(n) 研究函数f(n)的增减性 如an=

33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求

(1)当 >0,d

2023新高考数学会难吗

篇一高三数学重要知识点整理

一、求动点的轨迹方程的基本步骤

 ⒈建立适当的坐标系,设出动点M的坐标;

 ⒉写出点M的集合;

 ⒊列出方程=0;

 ⒋化简方程为最简形式;

 ⒌检验。

 二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

 ⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

 ⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

 ⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

 ⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

 ⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

 *直译法:求动点轨迹方程的一般步骤

 ①建系——建立适当的坐标系;

 ②设点——设轨迹上的任一点P(x,y);

 ③列式——列出动点p所满足的关系式;

 ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

 ⑤证明——证明所求方程即为符合条件的动点轨迹方程。

篇二高三数学重要知识点整理

 第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

 主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

 第二、平面向量和三角函数。

 重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

 第三、数列。

 数列这个板块,重点考两个方面:一个通项;一个是求和。

 第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。

 第五、概率和统计。

 这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

 第六、解析几何。

 这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:

 第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;

 第二类我们所讲的动点问题;

 第三类是弦长问题;

 第四类是对称问题,这也是2008年高考已经考过的一点;

 第五类重点问题,这类题时往往觉得有思路,但是没有答案,

 当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

 第七、押轴题。

 考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

篇三高三数学重要知识点整理

 考点一:集合与简易逻辑

 集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

 考点二:函数与导数

 函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

 考点三:三角函数与平面向量

 一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.

 考点四:数列与不等式

 不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.

 考点五:立体几何与空间向量

 一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

 考点六:解析几何

 一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

 考点七:算法复数推理与证明

 高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问.

黑龙江高考数学难吗

2023新高考数学会难。

1、考察全面,注重基础性

全面考查了集合、简易逻辑、复数,向量、排列组合、三角、数列、立体解析、函数导数,实现了基础知识全覆盖,同时突出主干知识的考查,贴近日常教学实际。

2、真实情境,彰显应用性

利用对数函数研究噪声的强弱,通过声压的研究考察对数及其运算,通过学校开设选修课为情境,设置选修方案考察学生在实际情境中应用数学解决实际问题的能力。

3、设置梯度,体现综合性

多选题相对来说考查了基础知识的综合应用能力,考查了学生的空间想象能力,第21题概率与数列递推,以及第3问新概念新知识的应用,第22题对基础知识的综合运用,增加了思维量,加大了区分度,为创新型人才选拔和培养提供可能。

2023新高考数学答题技巧:

1、检查关键结果

高考数学解题过程中得到关键结果,要审查一下这个结果有没有错。一旦出错,后面的解答也是费力不讨好。

2、难题不要怕

会多少写多少。高考数学评卷的主观性很少,评分细则都是细分到每一分,就算不会做,写几个公式也能拿分。

3、保证准确率

数学应先将准确性放在第一位,不能一味地去追求速度或技巧。高考数学狠抓基础题,先小题后大题,确保一次性成功。

4、522原则

“522原则”做送分题。坚持“522原则”。把眼睛多盯在选择题的前5个,填空题的前2到3个,解答题的前2个。这些题都是送分的题,不会很难。

成人高考高数考什么内容?

难度一般,正常发挥,扎实基础,应该不会很难,要记住,题目难的时候别人也是难的,自己以平常的水平,发挥出来就好。

按照目前高考制度,高考数学总分是150分。及格分为90分,优秀分为120分,优异分为140分以上。一般学生能考到120分以上,就算高分。不过,对于优秀生来说,很多都考满分,或者考140分以上,130分以上更是多见。

高考温馨提示

高考数学选择题总分60,共12题,每题5分。填空4题,每题4分,共16分。第三大题是解答题,解答题占72分共有6个小题,这六个小题考核内容是相对固定的,有数列,三角函数,概率题,立体几何,解析几何,导数等。

通常解析几何放在倒数第二题,大约占12分,导数放在倒数第一题,大约占15~18分,这两个题加起来不会超过30分,至于其他四个题目分值也不均匀,8分,10分,12分的都有可能。六个大题除了最后一个导数题是三个小题之外其他题目一般都只有两个小题。一般来说,高考数学中集合与简易逻辑。

数学高考都有哪些是考点?

成人高考高数考什么内容?大家都知道学历是一个敲门砖,因此成人高考是很多就业者不错的选择,但是有不少人在报考成人高考的时候,都想提前先了解一些关于成人高考的常见问题,下面教务老师为大家解答一下关于成人高考相关信息,希望对大家有所帮助!

成人高考高数考什么内容?

成人高考数学考试内容具体如下,仅供参考!

1.理工农医类

考试范围包括代数、三角、平面解析几何、立体几何、概率与统计五个部分。在实际考试中,这五个部分内容占试卷比例分别为45%、15%、20%、10%和10%。

2.文史财经类

考试范围为代数、三角、平面解析几何、概率与统计四个部分。在实际考试中,这四个部分内容占试卷比例分别为55%、15%、20%和10%。

(1)代数部分

考试内容有集合和简易逻辑、函数、不等式和不等式组、数列、导数和复数等(文史财经没有复数);

(2)三角部分

有三角函数及其有关概念、三角函数式的变换、三角函数的图像和性质、解三角形等;

(3)平面解析几何部分

有平面向量、直线、圆锥曲线等。

(4)立体几何部分

有直线和平面、空间向量、多面体和旋转体等(文史财经没有立体几何部分)。

(5)概率与统计初步部分

有概率初步、统计初步等,理工农医类包含排列、组合与二项式定理,文史财经类包含排列、组合。

自考/成人高考有疑问、不知道如何选择主考院校及专业、不清楚自考/成考当地政策,点击底部咨询官网老师,免费领取复习资料:一、集合、简易逻辑(14课时,8个) 1.集合; 2.子集; 3.补集; 4.交集; 5.并集; 6.逻辑连结词; 7.四种命题; 8.充要条件. 二、函数(30课时,12个) 1.映射; 2.函数; 3.函数的单调性; 4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充; 7.有理指数幂的运算; 8.指数函数; 9.对数; 10.对数的运算性质; 11.对数函数. 12.函数的应用举例. 三、数列(12课时,5个) 1.数列; 2.等差数列及其通项公式; 3.等差数列前n项和公式; 4.等比数列及其通顶公式; 5.等比数列前n项和公式. 四、三角函数(46课时17个) 1.角的概念的推广; 2.弧度制; 3.任意角的三角函数; 4,单位圆中的三角函数线; 5.同角三角函数的基本关系式; 6.正弦、余弦的诱导公式’ 7.两角和与差的正弦、余弦、正切; 8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质; 10.周期函数; 11.函数的奇偶性; 12.函数 的图象; 13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理; 16余弦定理; 17斜三角形解法举例. 五、平面向量(12课时,8个) 1.向量 2.向量的加法与减法 3.实数与向量的积; 4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积; 7.平面两点间的距离; 8.平移. 六、不等式(22课时,5个) 1.不等式; 2.不等式的基本性质; 3.不等式的证明; 4.不等式的解法; 5.含绝对值的不等式. 七、直线和圆的方程(22课时,12个) 1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式; 4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离; 7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念; 10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程. 八、圆锥曲线(18课时,7个) 1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程; 4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程; 7.抛物线的简单几何性质. 九、(B)直线、平面、简单何体(36课时,28个) 1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线; 4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质; 6.三垂线定理及其逆定理; 7.两个平面的位置关系; 8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示; 10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角; 13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质; 16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角; 19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离; 22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体; 25.棱柱; 26.棱锥; 27.正多面体; 28.球. 十、排列、组合、二项式定理(18课时,8个) 1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’ 4.组合; 5.组合数公式; 6.组合数的两个性质; 7.二项式定理; 8.二项展开式的性质. 十一、概率(12课时,5个) 1.随机事件的概率; 2.等可能事件的概率; 3.互斥事件有一个发生的概率; 4.相互独立事件同时发生的概率; 5.独立重复试验. 选修Ⅱ(24个) 十二、概率与统计(14课时,6个) 1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方差; 3.抽样方法; 4.总体分布的估计; 5.正态分布; 6.线性回归. 十三、极限(12课时,6个) 1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限; 4.函数的极限; 5.极限的四则运算; 6.函数的连续性. 十四、导数(18课时,8个) 1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数; 4.两个函数的和、差、积、商的导数; 5.复合函数的导数; 6.基本导数公式; 7.利用导数研究函数的单调性和极值; 8函数的最大值和最小值. 十五、复数(4课时,4个) 1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法; 4.数系的扩充. 追问: 拜托……我们是新课改的,选修多了去了…… 还有我说的那个 不等式 是怎么回事? 回答: 至于你说的 不等式 ,高考肯定会考,但很少直接出题考你,而是通过一些题间接的考,特别是一些大体,几个步骤间接对不等式的性质考察,往往,这是解题关键 追问: 那你说比如什么 柯西不等式 之类的放到大题里面不就太扯了…… 回答: 新课程教材新增内容考点共14 个,分别是: 1. 幂函数 2. 函数零点 与 二分法 3. 三视图 4.算法程序框图与基本算法语句 5. 茎叶图 6.随机数与 几何概型 7.全称量词与存在 量词 8.积分(理科) 9.合情推理与演绎推理 10. 条件概率 (理科) 补充: 并不是很扯,这是可能的,比如在大体往往有一个小问是证明题,这个证明题可以出为用 柯西不等式 证明,但往往只是一个有限个数的式子。 我经历过高三和高考,做过很多题, 不等式 往往重在不等式的证明,而证明方法和思维是很重要的,常用的要记熟( 放缩法 ……)