小高考物理公式-小高考物理公式汇总
1.高考物理有用的推论和二级公式(比如 I=Δφ/R 这类的公式)?
2.高考物理重要 常用公式有哪些
3.高考物理求线圈感应电动势大小用什么公式
4.物理高考必考公式
5.高考物理公式解析总结
高考物理有用的推论和二级公式(比如 I=Δφ/R 这类的公式)?
)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 3)万有引力 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径} 注: (1)天体运动所需的向心力由万有引力提供,F向=F万; (2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反); (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。 1)常见的力 1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近) 2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)} 3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)} 4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力) 5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上) 6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上) 7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同) 8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0) 9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0) 2)力的合成与分解 1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重} 6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子 五、振动和波(机械振动与机械振动的传播) 1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向} 2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身; (2)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式; (3)干涉与衍射是波特有的; 1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同} 3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定} 4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式} 5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′ 6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒} 7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能} 8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体} 9.物体m1以v1初速度与静止的物体m2发生弹性正碰: v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2) 10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒) 11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失 E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移} 1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角} 2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)} 3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb} 4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)} 5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)} 6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率} 7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f) 8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)} 9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)} 10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt 11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)} 12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)} 13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)} 14.动能定理(对物体做正功,物体的动能增加): W合=mvt2/2-mvo2/2或W合=ΔEK {W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)} 15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2 16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP 注: (1)功率大小表示做功快慢,做功多少表示能量转化多少; (2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功); (3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少 (4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。 八、分子动理论、能量守恒定律 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力 (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值) (3)r>r0,f引>f斥,F分子力表现为引力 (4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)} 注: (1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; (2)温度是分子平均动能的标志; 3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; (4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; (5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0 (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; (7)r0为分子处于平衡状态时,分子间的距离;
高考物理重要 常用公式有哪些
高考物理,需掌握以下基本公式与二级结论,记熟二级结论并能熟练应用更为关键。
高中物理重要公式与二级结论。
一.力?物体的平衡:
1.N个力平衡,则任意一个力与其它力的合力等大反向。. 2.三个大小相等的力平衡,力之间的夹角为120度 3.物体沿斜面匀速下滑,则?. 4.两个一起运动的物体“刚好脱离”时:?恰接触不挤压,弹力为零。此时速度、加速度相等,此后不等.
5.同一根轻绳上的张力处处相等。.
6.物体受三个不共线力而处于平衡状态,则这三个力必交于一点(三力汇交原理).
7.动态平衡中,如果一个力大小方向都不变,另一个力方向不变,判断第三个力的变化,要用矢量三角形来判断,求最小力时也用此法。
二.直线运动:
1.匀变速直线运动:?平均速度:
时间等分时:
中间位置的速度:?
纸带处理求速度、加速度:?
2.初速度为零的匀变速直线运动的比例关系:
等分时间:相等时间内的位移之比 ?1:3:5:……
等分位移:相等位移所用的时间之比 ?
3.竖直上抛运动的对称性:t上=?t下,V上=?-V下
4.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。先求滑行时间,确定了滑行时间小于给出的时间时,用V2=2aS求滑行距离.
5.“S=3t+2t2”:a=4m/s2 ,V0=3m/s.6.追击中的最小距离、最大距离、恰好追上、恰好追不上、避碰等中的临界条件都为速度相等.
7.运动的合成与分解中:
船头垂直河岸过河时,过河时间最短.
船的合运动方向垂直河岸时,过河的位移最短. 8.绳端物体速度分解:对地速度是合速度,分解时沿绳子的方向分解和垂直绳子的方向分解.三.牛顿运动定律:
1.超重、失重(选择题可直接应用,不是重力发生变化)超重:物体向上的加速度时,处于超重状态,此时物体对支持物(或悬挂物)的压力(或拉力)大于它的重力.
失重:物体有向下的加速度时,处于失重状态,此时物体对支持物(或悬挂物)的压力(或拉力)小于它的重力。有完全失重(加速度向下为g).
2.几个临界问题:? ?
3.速度最大时往往合力为零:
4.牛顿第二定律的瞬时性:
不论是绳还是弹簧:剪断谁,谁的力立即消失;不剪断时,绳的力可以突变,弹簧的力不可突变.四.圆周运动、?万有引力:
1.向心力公式:?.?
2.同一皮带或齿轮上线速度处处相等,同一轮子上角速度相同.
3.在非匀速圆周运动(竖直平面内的圆周运动)中使用向心力公式的办法:沿半径方向的合力是向心力.
4.竖直平面内的圆运动:
(1)“绳”类:最高点最小速度
(此时绳子的张力为零),最低点最小速度
(2)“杆”:最高点最小速度0(此时杆的支持力为mg),最低点最小速度5.开普勒第三定律:T2/R3=K(=4π2/GM){K:常量(与行星质量无关,取决于中心天体的质量)}.
6.万有引力定律:F=GMm/r2?=mv2/r=mω2r=m4π2r/T2?(G=6.67×10-11N?m2/kg2)
7.地球表面的万有引力等于重力:GMm/R2=mg;g=GM/R2?(黄金代换式)
8.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2?
(轨道半径变大时,线速度变小,角速度变小,加速度变小,势能变大,周期变大)9.第一(二、三)宇宙速度V1=(g地R地)1/2=(GM/R地)1/2=7.9km/s(注意计算方法);V2=11.2km/s;V3=16.7km/s
10.地球同步卫星:T=24h,h=3.6×104km=5.6R地 (地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同)
11.卫星的最小发射速度和最大环绕速度均为V=7.9km/s,卫星的最小周期约为86分钟(环地面飞行的卫星)
12.双星引力是双方的向心力,两星角速度相同,星与旋转中心的距离跟星的质量成反比。
13。物体在恒力作用下不可能作匀速圆周运动
14。圆周运动中的追赶问题(钟表指针的旋转和天体间的相对运动):?,其中T1<T2。
五.机械能:
1.求功的途径:
①用定义求恒力功.②用动能定理(从做功的效果)或能量守恒求功.③由图象求功.④用平均力求功(力与位移成线性关系).
⑤由功率求功.
2.功能关系--------功是能量转化的量度,功不是能.
⑴重力所做的功等于重力势能的减少(数值上相等)
⑵电场力所做的功等于电势能的减少(数值上相等)
⑶弹簧的弹力所做的功等于弹性势能的减少(数值上相等)
⑷分子力所做的功等于分子势能的减少(数值上相等)
⑷合外力所做的功等于动能的增加(所有外力)
⑸只有重力和弹簧的弹力做功,机械能守恒
⑹克服安培力所做的功等于感应电能的增加(数值上相等)
(7)除重力和弹簧弹力以外的力做功等于机械能的增加
(8)功能关系:摩擦生热Q=f?S相对?(f滑动摩擦力的大小,ΔE损为系统损失的机械能,Q为系统增加的内能)
(9)静摩擦力可以做正功、负功、还可以不做功,但不会摩擦生热;滑动摩擦力可以做正功、负功、还可以不做功,但会摩擦生热。
(10)作用力和反作用力做功之间无任何关系,?但冲量等大反向。一对平衡力做功不是等值异号,就是都不做功,但冲量关系不确定。
3.传送带以恒定速度运行,小物体无初速放上,达到共同速度过程中,相对滑动距离等于小物体对地位移,摩擦生热等于小物体的动能.
4.发动机的功率P=Fv,当合外力F=0时,有最大速度vm=P/f (注意额定功率和实际功率).
5.00≤α<900?做正功;900<α≤1800做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功).
6.能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J.
六.动量:
1.同一物体某时刻的动能和动量大小的关系:?
2.碰撞的分类?:
①弹性碰撞——动量守恒,动能无损失
②完全非弹性碰撞——?动量守恒,动能损失最大。(以共同速度运动)
③非完全弹性碰撞——?动量守恒,动能有损失。碰撞后的速度介于上面两种碰撞的速度之间(大物碰静止的小物,大物不可能速度为零或反弹)
3.一维弹性碰撞:?动物碰静物:V2=0,?
(质量大碰小,一起向前;质量相等,速度交换;小碰大,向后转)
4.A追上B发生碰撞,满足三原则:
①动量守恒?②动能不增加③合理性原则{A不穿过B(?)}5.小球和弹簧:①A、B两小球的速度相等为弹簧最短或最长或弹性势能最大时
②弹簧恢复原长时,A、B球速度有极值:若MA≥MB时,B球有最大值,A球有最小值;若MA<MB时,A球最小值为零,B球速度可求,但不为极值.(如图)
6.解决动力学问题的三条思路:力、功能、动量
七.机械振动和机械波:
1.物体做简谐振动: ①在平衡位置达到最大值的量有速度、动能 ②在最大位移处达到最大值的量有回复力、加速度、势能 ③通过同一点有相同的位移、速率、回复力、加速度、动能、势能、可能有不同的运动方向④经过半个周期,物体运动到对称点,速度大小相等、方向相反。
⑤经过一个周期,物体运动到原来位置,一切参量恢复。
2.由波的图象讨论波的传播距离、时间、周期和波速等时:注意“双向”和“多解”
3.波动图形上,介质质点的振动方向:“上坡下,下坡上”;振动图像中介质质点的振动方向为“上坡上,下坡下”.(要区分开)
4.波进入另一介质时,频率不变、波长和波速改变,波长与波速成正比(机械波的波速只有介质决定)。
5.波动中,所有质点都不会随波逐流,所有质点的起振方向都相同?
6.两列频率相同、且振动情况完全相同的波,在相遇的区域能发生干涉。波峰与波峰(波谷与波谷)相遇处振动加强(△s=?±?kλ?k=0、1、2、3……);波峰与波谷相遇处振动减弱(△s=?±(2k+1)λ/2?k=0、1、2、3……)干涉和衍射是波的特征。
7.受迫振动时,振动频率等于驱动力频率,与固有频率无关.只有当驱动力频率等于固有频率时会发生共振.
八.热学
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10—10米,原子核直径数量级10—15米
2.分子质量m=M/N?(M为摩尔质量,N为阿伏加德罗常数);分子体积为V0=V/N?(V为摩尔体积,注意:如果是气体,则为分子的占有体积)
3.布朗运动是微粒的运动,不是分子的运动.
4.分子势能用分子力做功来判断,r0处分子势能最小,分子力为零.
5.分析气体过程有两条路:一是用参量分析(PV/T=C)、二是用能量分析(ΔE=W+Q)。内能变化看温度,做功情况看体积,吸放热则综合前两项考虑
6.一定质量的理想(分子力不计)气体,内能看温度,做功看体积,吸热放热综合以上两项用能量守恒分析。
九.电场:
1.电势能的变化与电场力的功对应,电场力的功等于电势能增量的负值(减少量):?。
2.粒子飞出偏转电场时“速度的反向延长线,通过沿电场方向的位移的中心”。
3.讨论电荷在电场里移动过程中电场力的功基本方法:把电荷放在起点处,标出位移方向和电场力的方向,分析功的正负,并用W=FS计算其大小;或用W=qU计算.
4.处于静电平衡的导体内部合场强为零,整个是个等势体,其表面是个等势面.
5.电场线的疏密反映E的大小;沿电场线的方向电势越来越低;电势与场强之间没有联系.
6.电容器接在电源上,电压不变;?断开电源时,电容器电量不变;改变两板距离,场强不变。
7.电容器充电电流,流入正极、流出负极;电容器放电电流,流出正极,流入负极。
8.带电粒子在交变电场中的运动:
①直线运动:不同时刻进入,可能一直不改方向的运动;可能时而向左时而向右运动;可能往返运动(可用图像处理) ②垂直进入:若在电场中飞行时间远远小于电场的变化周期,则近似认为在恒定电场中运动(处理为类平抛运动);若不满足以上条件,则沿电场方向的运动处理同① ③带电粒子在电场和重力场中做竖直方向的圆周运动用等效法:当重力和电场力的合力沿半径且背离圆心处速度最大,当其合力沿半径指向圆心处速度最小. 9.沿电场线的方向电势越来越低,电势和场强大小没有联系. 十.恒定电流:1.电流的微观定义式:I=nqsv
2.等效电阻估算原则:电阻串联时,大的为主;电阻并联时,小的为主。
3.电路中的一个滑动变阻器阻值发生变化,有并同串反关系:电阻增大,与它并联的电阻上电流或电压变大,?与它串联的电阻上电流或电压变小;电阻减小,与它并联的电阻上电流或电压变小,?与它串联的电阻上电流或电压变大.
4.外电路任一处的一个电阻增大,总电阻增大,总电流减小,路端电压增大。
外电路任一处的一个电阻减小,总电阻减小,总电流增大,路端电压减小。
5.画等效电路的办法:始于一点(电源正极),止于一点(电源负极),盯住一点(中间等势点),步步为营。
6.纯电阻电路中,内、外电路阻值相等时输出功率最大(R外=r),;
7.含电容电路中,电容器是断路,电容不是电路的组成部分,仅借用与之并联部分的电压。稳定时,与它串联的电阻是虚设,如导线。在电路变化时电容器有充、放电电流。
恒定电流实验:
1.?考虑电表内阻的影响时,电压表和电流表在电路中,?既是电表,又是电阻。
2.?选用电压表、电流表:
①?测量值不许超过量程。
②?测量值越接近满偏值(表针偏转角度越大)误差越小,一般应大于满偏值的三分之一。
③?电表不得小偏角使用,偏角越小,相对误差越大?。
3.选欧姆表时,指针偏角应在三分之一到三分之二之间(选档、换档后,经过“调零”才能进行测量)。.
4.选限流用的滑动变阻器:在能把电流限制在允许范围内的前提下选用总阻值较小的变阻器调节方便;?选分压用的滑动变阻器:阻值小的便于调节且输出电压稳定,但耗能多。
5.分压式和限流式电路的选择:
①题目要求电压或电流从零可调(校对电路、测伏安特性曲线),一定要用分压式。? ②滑动变阻器的最大值比待测电阻的阻值小很多时,限流式不起大作用,要用分压式。 ③用限流式时不能保证用电器安全时用分压式。 ④分压和限流都可以用时,限流优先(能耗小)。6.伏安法测量电阻时,电流表内、外接的选择:
①RX远大于RA时,采用内接法,误差来源于电流表分压,测量值偏大; ②RV远大于RX时,采用外接法,误差来源于电压表分流,测量值偏小. ③?大于?时,?采用内接法;?小于?时,?采用外接法7.电压表或电流表中,电流大小与其偏转角成正比,一般有左进左偏,右进右偏
8.测电阻常用方法:
①伏安法?②替代法?③半偏法?④比较法9.已知内阻的电压表可当电流表使用;已知内阻的电流表可当电压表使用;已知电流的定值电阻可当电压表使用;已知电压的定值电阻可当电流表使用.
10.欧姆表的中值电阻刚好等于其欧姆表的内阻.
十一.磁场:
1.圆形磁场区域:带电粒子沿半径方向进入,则出磁场时速度方向必过圆心
2.粒子速度垂直于磁场时,做匀速圆周运动:?,?(周期与速率无关)。
3.粒子径直通过正交电磁场(离子速度选择器):粒子穿过磁场的有关计算,抓几何关系,即入射点与出射点的半径和它们的夹角
4.最小圆形磁场区域的计算:找到磁场边界的两点,以这两点的距离为直径的圆面积最小
5.圆形磁场区域中飞行的带电粒子的最大偏转角为进入点和出点的连线刚好为磁场的直径
6.要知道以下器件的原理:质谱仪、速度选择器、磁流体发电机、霍耳效应、电磁流量计、地磁场、磁电式电表原理、回旋加速器、电磁驱动、电磁阻尼、高频焊接等.
7。带电粒子在匀强电场、匀强磁场和重力场中,如果做直线运动,一定做匀速直线运动。如果做匀速圆周运动,重力和电场力一定平衡,只有洛仑兹力提供向心力。
8。电性相同的电荷在同一磁场中旋转时,旋转方向相同,与初速度方向无关。
十二.电磁感应:
1.?楞次定律的若干推论:
(1)内外环电流或者同轴的电流方向:“增反减同”
(2)导线或者线圈旁的线框在电流变化时:电流增加则相斥、远离,电流减小时相吸、靠近。
(3)磁场“╳增加”与“?减少”感应电流方向一样,反之亦然。
(4)磁通量增大时,回路面积有收缩趋势,磁通量减小时,回路面积有膨胀趋势
2.运用楞次定律的若干经验:
①内外环电路或者同轴线圈中的电流方向:“增反减同” ②导线或者线圈旁的线框在电流变化时:电流增加则相斥、远离,电流减小时相吸、靠近。 ③“×增加”与“?减少”,感应电流方向一样,反之亦然。 ④单向磁场磁通量增大时,回路面积有收缩趋势,磁通量减小时,回路面积有膨胀趋势。?通电螺线管外的线环则相反。⑤楞次定律逆命题:双解,“加速向左”与“减速向右”等效。
⑥感应电流的方向变否,可以看B-t图像中斜率正负是否变化.
3.磁通量的计算中,无论线圈有多少匝,计算时都为φ=BS
4.自感现象中,灯泡是否闪亮,要看后来的电流是否比原来大,若是,则闪亮,否则不闪亮.日光灯线路连接.
5.楞次定律逆命题:双解,“加速向左”与“减速向右”等效。
6.法拉第电磁感应定律求出的是平均电动势,在产生正弦交流电情况下只能用来求感生电量,不能用来求功和能量。
7.直杆平动垂直切割磁感线时所受的安培力:?
8.转杆(轮)发电机:
9.感生电量:?
十三.交流电:
1.正弦交流电的产生:
中性面为垂直磁场方向,此时磁通量最大,磁通量的变化率为零,电动势为零
线圈平面平行于磁场方向时,?此时磁通量最小,磁通量的变化率最大,电动势最大。
最大电动势:?与Em此消彼长,一个最大时,另一个为零。2.交流电中,注意有效值和平均值的区别,能量用有效值,电量用平均值.
3.求电量的方法有两种:①用平均电动势得q=nΔφ/R?②动量定理
4.非正弦交流电的有效值的求法:I2RT或U2T/R等于一个周期内产生的总热量.
5.理想变压器原副线之间量的决定关系:电压原线圈决定副线圈;电流副线圈决定原线圈;功率副线圈决定原线圈
6.变压器中说负载增加,实为并联的用电器增多,负载电阻减小.
7.远距离输电计算的思维模式要记好.
8.自藕变压器和滑动变阻器,电流互感器和电压互感器要区分.
9.理想变压器原副线圈之间相同的量:?
十四.电磁场和电磁波:
1.电磁振荡中电容器上的电量q与电流i的关系总是相反。
2.?电磁场理论?:
①变化的磁(电)场产生电(磁)场
②均匀变化的磁(电)场产生的稳定的电(磁)场
③周期性变化的磁(电)场产生周期性变化的电(磁)场
3.感抗为XL=2πLf;容抗为XC=1/2πfc
十五.光的反射和折射:
1.光通过平行玻璃砖,出玻璃砖时平行于原光线;光过棱镜,向底边偏转.
2.光线射到球面和柱面上时,半径是法线.
3.单色光对比的七个量:偏折角、折射率、波长、频率、介质中的光速、光子能量、临界角.
4.可见光中:红光的折射率最小,紫光的折射率最大;红光在介质中的光速最大,紫光在介质中的光速最小;红光最不易发生全反射,紫光最易发生全反射;红光的波动性比紫光强,粒子性比紫光弱;红光的干涉条纹(或衍射条纹的中间条纹)间距比紫光大;紫光比红光更易引起光电效应.
5.视深公式h’=h/n?(水中看七色球,感觉红球最深,紫球最浅)
十六.光的本性:
1.双缝干涉图样的“条纹宽度”(相邻明条纹中心线间的距离):?。
2.增透膜增透绿光,其厚度为绿光在膜中波长的四分之一。
3.薄膜干涉中用标准样板(空气隙干涉)检查工件表面情况:条纹向窄处弯是凹,向宽处弯是凸(左凹右凸)。
4.电磁波穿过介质面时,频率(和光的颜色)不变。
十七.量子论初步
1.个别光子表现出粒子性;大量光子表现出波动性
2.跃迁中,从n能级跃迁到基态时,将会放出Cn2种不同频率的光.
3.能引起跃迁的,若用光照,能电离可以,否则其能量必须等于能级差,才能使其跃迁;若用实物粒子碰撞,只要其动能大于(或等于)能级差,就能跃迁.
4.个别光子表现为粒子性,大量光子表现为波动性.
十七.原子物理:?
1.磁场中的衰变:外切圆是?衰变,内切圆是?衰变,半径与电量成反比。
2.衰变方程、人工核转变、裂变、聚变这四种方程要区分
3.1u相当于931.5MeV,注意题目中的质量单位是Kg还是u.?
4.核反应总质量增大时吸能,总质量减少时放能,仅在人工转变中有一些是吸能的核反应。
其它常见非常有用的经验结论:
1、物体沿倾角为α的斜面匀速下滑------?=tanα?;
物体沿光滑斜面滑下a=gsinα物体沿粗糙斜面滑下a=gsinα-gcosα
2、两物体沿同一直线运动,在速度相等时,距离?有最大或最小;
3、物体沿直线运动,速度最大的条件是:?a=0或合力为零?。
4、两个共同运动的物体刚好脱离时,两物体间的弹力为?=0?,加速度?相等?。
5、两个物体相对静止,它们具有相同的?速度?;
6、水平传送带以恒定速度运行,小物体无初速度放上,达到共同速度过程中,摩擦生热等于小物体的动能。
7、一定质量的理想气体,内能大小看?温度,做功情况看体积?,吸热、放热综合以上两项用能量守恒定律分析。
8、电容器接在电源上,?电压?不变;断开电源时,电容器上电量不变;改变两板距离?E?不变。
10、磁场中的衰变:外切圆是?α衰变,内切圆是?β?衰变,α,β是大圆。
11、直导体杆垂直切割磁感线,所受安培力F=?B2L2V/R。
12、电磁感应中感生电流通过线圈导线横截面积的电量:Q=?N△Ф/R。
13、解题的优选原则:满足守恒则选用守恒定律;与加速度有关的则选用牛顿第二定律F=ma;与时间直接相关则用动量定理;与对地位移相关则用动能定理;与相对位移相关(如摩擦生热)则用能量守恒。
高考物理求线圈感应电动势大小用什么公式
E=BSWsinwt。
拓展介绍:
1、每匝感应电动势
公式:
e= 4.44 f B S x 0.00000001
式中:
e--------每匝感应电动势
f--------电源频率,取固定值50
B-------铁芯磁通量
S-------铁芯截面积
2、铁芯最大输出功率
公式:
Ps= (S/K)x(S/K)
式中:
S------铁芯截面积
Ps-----铁芯最大输出功率
K------经验系数
经验系数K根据下表取值
Ps(W)0----10
10---5050---500500---10001000以上 K 2 1.75 1.4 1.2 1
首先K取值1计算Ps ,然后根据Ps取K的值重新计算Ps,再根据Ps取K值在重新计算Ps,重复计算10次后后计算的Ps值即为铁芯最大输出功率。这样取出的铁芯最大输出功率值的误差已经很小了,完全可以忽略。
3、所需铁芯输出功率
公式:
P= UI
式中:
P-------变压器输出功率
U------输出电压
I-------输出电流
当次级绕组工作类型为分时工作时,所需铁芯输出功率为次级绕组各种电压输出功率中的一个最大值。
当次级绕组工作类型为同时工作时,所需铁芯输出功率为次级绕组各种电压输出功率的总和。
4、绕组匝数
公式:
W= U/e
式中:
W-------绕组匝数
U--------绕组电压
e-------每匝感应电动势
单项变压器在计算次级绕组匝数时,绕组电压U 的取值自动根据整流方式加上了整流器件正向压降,绕组匝数自动增加了5%的匝数以便补偿负载时的电压降。自藕变压器没有增加。
5、输入功率
公式:
P入= P出/η
式中:
P入-------输入功率
P出-------输出功率
η--------变压器损耗系数
6、输入电流
公式:
I= P/U
式中:
P--------输入功率
U-------输入电压
I--------输入电流
7、导线截面积
公式:
S= I/j
式中:
S--------导线截面积
I--------导线电流
j-------电流密度
物理高考必考公式
物理高考必考公式如下:
高中物理知识点总结一:直线运动
理解口诀:
1、物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。
2、运用一般公式法,平均速度是简法,中间时刻速度法,初速为零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g。竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。
高中物理知识点总结二:曲线运动、万有引力
理解口诀:
1、运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。
2、圆周运动向心力,供需关系在心里,径向合力提供足,供求平衡不心离;物理方程很关键,一串公式是武器。
3、万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。
高中物理知识点总结三:力(常见的力、力的合成与分解)
1)常见的力
2)力的合成与分解
四、动力学(运动和力)
五、振动和波(机械振动与机械振动的传播)
六、冲量与动量(物体的受力与动量的变化)
七、功和能(功是能量转化的量度)
八、分子动理论、能量守恒定律
九、气体的性质
十、电场
十一、恒定电流
十二、磁场
十三、电磁感应
十四、交变电流(正弦式交变电流)
高考物理公式解析总结
高中物理与九年义务 教育 物理或者科学课程相衔接,主旨在于进一步提高同学们的科学素养,与实际生活联系紧密,下面我给大家整理了关于高考物理公式解析 总结 ,欢迎大家阅读!
交变电流公式总结
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
注:(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;
(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中 性面电流方向就改变;
(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;
(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;
电磁振荡和电磁波公式总结
1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}
2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}
注:(1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;
(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;
磁场公式总结
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A m
2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,
洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
高考 物理 学习 方法
爱因斯坦有个成功的公式:A=X+Y+Z。A代表成功,X代表艰苦劳动,Y代表正确方法,Z代表少说废话。这个公式指明事业成功的三要素。对于学业来说,成功也有三要素:学习成功=心理素质十学习方法十智能素质
(1)学习的动机。学习需要动机。由于学生的个人需要而产生的学习内驱力很重要。有人有旺盛的求知欲,对学习有浓厚的兴趣,正是如此,如升学、就业、兴趣、 爱好 、荣誉、地位、求知欲、事业、前途等都是。我们要努力强化学习的动机,如树立远大理想;参加各种竞赛,挑战强者,激起学习欲望;看到自己学习成果而受鼓励,从而增强自信,经受挫折,要有不甘失败和屈辱的精神。
(2)学习的兴趣。浓厚的学习兴趣与效率有密切关系,可以从好奇心和求知欲中激发学习兴趣。如物理的实验,化学的变化等,容易引起人的好奇和求知;培养对各门功课的兴趣。往往是刻苦学习后,才发现知识的奥秘和用途,才提高学习成绩,所以一定要钻进书海去;把知识应用于实践,激发兴趣,用自己所学的知识分析解决出问题时,那种成功感易激发学习兴趣。
(3)学习的情感、意志和态度。将积极的情感同学习联系起来,防止消极情绪的滋生,可以促进学习。善于控制自己,是学习意志力培养的关键。控制和约束自己的行动,控制不需要的想法和情绪,可以使思想集中到学习上来,这点是尤为重要的。
高考物理公式解析总结相关 文章 :
★ 高考物理公式总结归纳
★ 高中物理公式总结归纳
★ 2020高考物理公式必背大汇总
★ 高考物理公式小知识点
★ 高一物理公式大全总结
★ 高考物理必考知识点及公式总结
★ 高考必备物理公式
★ 高中物理知识点总结与公式归纳
★ 高考物理知识点公式总结电场与磁场
★ 高考物理必备公式大全
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。