1.2017年高考数学平面向量必考知识点

2.2017年高考数学平均分

3.2017年数学高考卷子的六道大题

2017年高考数学平面向量必考知识点

2017年福建高中数学会考试卷-福建省2017高考数学

 平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。以下是我为您整理的关于2017年高考数学平面向量必考知识点的相关资料,希望对您有所帮助。

 高考数学必考知识点平面向量概念:

 (1)向量:既有大小又有方向的量。向量不能比较大小,但向量的模可以比较大小。

 (2)零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行。

 (3)单位向量:模为1个单位长度的向量

 (4)平行向量:方向相同或相反的非零向量

 (5)相等向量:长度相等且方向相同的向量

 高考数学必考知识点平面向量数量积解析

 1、平面向量数量积:已知两个非零向量a、b,那么|a||b|cos?(?是a与b的夹角)叫做a与b的数量积或内积,记作a?b。零向量与任意向量的数量积为0。数量积a?b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos?的乘积。

 两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a?b=x1?x2+y1?y2

 2、平面向量数量积具有以下性质:

 1、a?a=|a|2?0

 2、a?b=b?a

 3、k(a?b)=(ka)b=a(kb)

 4、a?(b+c)=a?b+a?c

 5、a?b=0<=>a?b

 6、a=kb<=>a//b

 7、e1?e2=|e1||e2|cos?

 高考数学必考知识点平面向量加法解析

 已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。

 注:向量的加法满足所有的加法运算定律,如:交换律、结合律。

 高考数学必考知识点平面向量减法解析

 1、AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、指被减。

 -(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。

 平面向量公式汇总

 1、定比分点

 定比分点公式(向量P1P=向量PP2)

 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 ?,使 向量P1P=向量PP2,?叫做点P分有向线段P1P2所成的比。

 若P1(x1,y1),P2(x2,y2),P(x,y),则有

 OP=(OP1+?OP2)(1+?);(定比分点向量公式)

 x=(x1+?x2)/(1+?),

 y=(y1+?y2)/(1+?)。(定比分点坐标公式)

 我们把上面的式子叫做有向线段P1P2的定比分点公式

 2、三点共线定理

 若OC=?OA +?OB ,且?+?=1 ,则A、B、C三点共线

 三角形重心判断式

 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

 [编辑本段]向量共线的重要条件

 若b?0,则a//b的重要条件是存在唯一实数?,使a=?b。

 a//b的重要条件是 xy'-x'y=0。

 零向量0平行于任何向量。

 [编辑本段]向量垂直的充要条件

 a?b的充要条件是 a?b=0。

 a?b的充要条件是 xx'+yy'=0。

 零向量0垂直于任何向量.

 设a=(x,y),b=(x',y')。

 3、向量的加法

 向量的加法满足平行四边形法则和三角形法则。

 AB+BC=AC。

 a+b=(x+x',y+y')。

 a+0=0+a=a。

 向量加法的运算律:

 交换律:a+b=b+a;

 结合律:(a+b)+c=a+(b+c)。

 4、向量的减法

 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

 AB-AC=CB. 即?共同起点,指向被减?

 a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

 5、数乘向量

 实数?和向量a的乘积是一个向量,记作?a,且∣?a∣=∣?∣?∣a∣。

 当?>0时,?a与a同方向;

 当?<0时,?a与a反方向;

 当?=0时,?a=0,方向任意。

 当a=0时,对于任意实数?,都有?a=0。

 注:按定义知,如果?a=0,那么?=0或a=0。

 实数?叫做向量a的系数,乘数向量?a的几何意义就是将表示向量a的有向线段伸长或压缩。

 当∣?∣>1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上伸长为原来的∣?∣倍;

 当∣?∣<1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上缩短为原来的∣?∣倍。

 数与向量的乘法满足下面的运算律

 结合律:(?a)?b=?(a?b)=(ab)。

 向量对于数的分配律(第一分配律):(?+?)a=?a+?a.

 数对于向量的分配律(第二分配律):?(a+b)=?a+?b.

 数乘向量的消去律:① 如果实数0且?a=?b,那么a=b。② 如果a?0且?a=?a,那么?=?。

 6、向量的的数量积

 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0?〈a,b〉

 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。

 向量的数量积的坐标表示:a?b=x?x'+y?y'。

 向量的数量积的运算律

 a?b=b?a(交换律);

 (?a)?b=?(a?b)(关于数乘法的结合律);

 (a+b)?c=a?c+b?c(分配律);

 向量的数量积的性质

 a?a=|a|的平方。

 a?b 〈=〉a?b=0。

 |a?b|?|a|?|b|。

 7、向量的数量积与实数运算的主要不同点

 (1)向量的数量积不满足结合律,即:(a?b)?c?a?(b?c);例如:(a?b)^2?a^2?b^2。

 (2)向量的数量积不满足消去律,即:由 a?b=a?c (a?0),推不出 b=c。

 (3)|a?b|?|a|?|b|

 (4)由 |a|=|b| ,推不出 a=b或a=-b。

 8、向量的向量积

 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a?b。若a、b不共线,则a?b的模是:∣a?b∣=|a|?|b|?sin〈a,b〉;a?b的方向是:垂直于a和b,且a、b和a?b按这个次序构成右手系。若a、b共线,则a?b=0。

 (1)向量的向量积性质:

 ∣a?b∣是以a和b为边的平行四边形面积。

 a?a=0。

 a‖b〈=〉a?b=0。

 (2)向量的向量积运算律

 a?b=-b?a;

 (?a)?b=?(a?b)=a?(?b);

 (a+b)?c=a?c+b?c.

 注:向量没有除法,?向量AB/向量CD?是没有意义的。

 (3)向量的三角形不等式

 ∣∣a∣-∣b∣∣?∣a+b∣?∣a∣+∣b∣;

 ① 当且仅当a、b反向时,左边取等号;

 ② 当且仅当a、b同向时,右边取等号。

 ∣∣a∣-∣b∣∣?∣a-b∣?∣a∣+∣b∣。

 ① 当且仅当a、b同向时,左边取等号;

2017年高考数学平均分

文科79.97分,理科98.66分。

根据高考网的信息可得知2017年高考数学平均分信息如下:文史类:数学(文)79.97分,比去年降低1.14分。理工类:数学(理)98.66分,比去年提高6.16分。

普通高等学校招生全国统一考试简称“高考”,是合格的高中毕业生或具有同等学力的考生参加的选拔性考试。

2017年数学高考卷子的六道大题

17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网

(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997?4,0.997?416≈0.959?2,.

20.(12分)

已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

21.(12分)

已知函数=ae?^x+(a﹣2)e^x﹣x.

(1)?讨论的单调性;

(2)?若有两个零点,求a的取值范围.

(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修4-4,坐标系与参数方程](10分)

在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.

(1)若a=-1,求C与l的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

23.[选修4—5:不等式选讲](10分)

已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.

(1)当a=1时,求不等式f(x)≥g(x)的解集;

(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.