1.高考数学考什么

高考数学必考题型及答题技巧_高考shuxue

高考数学考点分布高考数学重点必考知识点总结。高考数学考试要取得好成绩,一方面要有扎实的基本功、熟练的计算能力,同时还要有一定的答题技巧。

一、高考数学必考题型之函数与导数

考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

函数与导数单调性

⑴若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

⑵若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

二、高考数学必考题型之几何

公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内

公理2:过不在同一条直线上的三点,有且只有一个平面

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

公理4:平行于同一条直线的两条直线互相平行

定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补

判定定理:

如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行“线面平行”

如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行“面面平行”

如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直“线面垂直”

如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直“面面垂直”

三、高考数学必考题型之不等式

①对称性

②传递性

③加法单调性,即同向不等式可加性

④乘法单调性

⑤同向正值不等式可乘性

⑥正值不等式可乘方

⑦正值不等式可开方

⑧倒数法则

四、高考数学必考题型之数列

(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。

(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题。

五、高考应试技巧

技巧一提前进入“角色”

考前晚上要睡足八个小时,早晨最好吃些清淡的早餐,带齐一切高考用具,如笔、橡皮、作图工具、身分证、准考证等。

提前半小时到达高考考区,一方面可以消除新异刺激,稳定情绪,从容进场,另一方面也留有时间提前进入“角色”让大脑开始简单的数学活动。回忆一下高考数学常用公式,有助于高考数学超常发挥。

技巧二情绪要自控

最易导致高考心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此间保持心态平衡的方法有三种

①转移注意法:把注意力转移到对你感兴趣的事情上或滑稽事情的回忆中。

②自我安慰法:如“我经过的考试多了,没什么了不起”等。

③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,如此进行到高考发卷时。

技巧三摸透“题情”

刚拿到高考数学试卷,不要匆匆作答,可先从头到尾通览全卷,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。

高考数学必考知识点从高考数学卷面上获取最多的信息,为实施正确的解题策略作准备,顺利解答那些一眼看得出结论的简单选择或填空题,这样可以使紧张的情绪立即稳定,使高考数学能够超常发挥。

技巧四信心要充足,暗示靠自己

高考数学答卷中,见到简单题,要细心,莫忘乎所以,谨防“大意失荆州”。面对偏难的题,要耐心,不能急。

考试全程都要确定“人家会的我也会,人家不会的我也会”的必胜信念,使自己始终处于最佳竞技状态

技巧五数学答题有先有后

1、答题应先易后难,先做简单的数学题,再做复杂的数学题;根据自己的实际情况,跳过实在没有思路的高考数学题,从易到难。

2、先高分后低分,在高考数学考试的后半段时要特别注重时间,如两道题都会做,先做高分题,后做低分题,对那些拿不下来的数学难题也就是高分题应“分段得分”,以增加在时间不足前提下的得到更多的分,这样在高考中就会增加数学超常发挥的几率。

高考数学考什么

新高考数学各知识点所占比如下:

一、分数占比

1、集合5分

2、三大函数5分

3、立体几何初步12分+5分

4、平面几何初步5分+12分

5、算法初步5分

6、统计5分

7、概率 5分+12分

8、三角函数恒等变换5分+5分+12分

9、平面向量5分

10、解三角形5分+12分

11、数列5分+12分

12、不等式5分+12分

13、常用逻辑用语5分

14、圆锥曲线与方程5分+12分

15、空间向量与立体几何5分+12分

16、导数及应用5分+12分

17、推理与证明12分

18、数系扩充与复数的引入5分

19、计数原理5分

20、坐标系与参数方程10分

二、题型

1、选择+填空(8题单选+4题多选+4题填空)16道,每道5分,共80分。占总分的大半。送分题、基础题较多,以书上性质、公式的运用为主。

2、集合、复数:默认送分题。平面向量:能建系尽量建系做。计数原理:以二次项定理与分配问题居多。统计与概率:可能会在读题上挖坑。其他:命题、各章基本概念、计算(不等式或者比大小)

3、中高档题会以几何或函数为主,可能会考新定义题。几何:解三角形、立体几何、解析几何。函数:函数(指对幂、正余切)的性质(单调奇偶对称周期)与图像(识别和变换)、简单求导、构造函数(常见于指对数比大小)。

4、新定义题:近年来高考的趋势,题干给出一个新的定义(高中课本里没学过的),然后让你利用其解题。难度一般都不会太大,只要严格按照题干描述一步一步做就行。

1.必备知识

必备知识包括数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,也包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能。高考数学重新确定了考试内容,根据能力考查的要求,在课程标准范围内,精选课程内容,必修课程包括五个主题, 分别是预备知识、函数、几何与代数、统计与概率、数学建模活动与数学探究活动。选择性必修课程包括四个主题,分别是函数、几何与代数、概率与统计、数学建模活动与数学探究活动。数学文化融入课程内容。 必修课程和选择性必修课程都是高考的内容。数学高考依据高校人才的选拔需求和考试的特点,以课程标准为基础,将其中的必修内容与选择性必修内容依据知识的内在联系进行整合,按逻辑系统进行分类,对知识内容和要求进行调整,整合后的考试内容包括集合、常用逻辑用语等十八个部分,数学建模活动、数学探究活动、数学文化将会融入上述知识内容的考查中。

2.关键能力

关键能力是学生在面对与学科相关的生活实践或学习探索问题情境时,能够有效地认识问题、分析问题和解决问题所必须具备的能力。

逻辑推理能力

会对问题或资料进行观察比较、分析、综合、抽象与概括,会用演绎、归纳和类比进行推理;能准确、清晰、有条理地进行表述。

直观想象能力

能根据条件画出正确的图形根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形等手段形象地揭示问题的本质。

创新能力

能结合日常生活、其他学科、学习实践中的素材,发现问题、提出问题;能灵活应用所学的数学知识、思想方法,独立思考、探索和研究,分析问题、解决问题。

运算求解能力

会根据概念、法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。

数学建模能力

能在实际情境中从数学的视角发现问题、提出问题、分析问题建立模型,求解模型,检验结果、改进模型,能对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题。

3. 学科素养

学科素养是指在正确的思想观念指导下综合运用学科知识能力处理并解决复杂任务的品质,是高考评价体系中考查目标的重要组成部分。数学对课程标准中的数学核心素养进行抽象和概括,提出了高考数学的学科素养目标,包括理性思维、数学应用、数学探究与数学文化。与课程标准中的核心素养相比,高考数学的学科素养更符合教育测量的规律,更具有高考的特点,更有利于实现高考的教育、评价和导向功能。