2013年山东数学高考题答案_2013年山东高考数学答案
1.2012年山东高考数学的答案
2.有关数学高考题
3.2009年山东高考理科数学问答试题及答案
画出可行域,求得极点有3个为(2,0)(0,1)(1/2,3)带入目标方程z=3x-y求得其范围是-3/2,6
或者联立三组方程(1)x+2y=2,2x+y=4(2)x+2y=2,4x-y=-1(3)2x+y=4,4x-y=-1分别求解求出的也是(2,0)(0,1)(1/2,3)
最后答案为A
2012年山东高考数学的答案
山东高考数学难度具体如下:
2023年山东高考各科试题难度总体来说适中,山东高考题目大部分都是比较难的,尤其是山东历史、政治和地理等科目题目,涉及知识点较多,难度较大。今年山东高考数学试卷难度中等偏上,数学基础好的考生,也觉得今年高考数学难度偏高。
山东高考数学难度较大。山东省2023年普通高考数学科目试题设置相对比较难,难度有所增加,但整体还是在适当难度范围内。2023年山东高考数学科目试卷结构设计合理,分值较为均衡,各个章节的试题分布比较均匀。
同时还加强了对解题思路和分析能力的考查,有利于锻炼考生的综合素质。试题难度虽然较大,但是不属于过度难题或者是普及难度过低的情况。针对不同学生的水平,考试安排了多种考试方式,同时也更加注重考生的实际能力水平。
山东高考数学试题对知识点的覆盖面、深度等方面进行了全方位的考查,既考察了基础知识的掌握,也重视了创新思维和解题方法的培养,对于提高学生的数学素养具有一定的推动作用。由于试题有一定难度,因此也引起了家长和学生们的关注。
相对于以往的试题,今年的高考数学考卷侧重于综合能力测试,一些考点需要考生在实际解题中进一步发现、理解和掌握。总之,山东高考数学试题难度适中,不仅考察了基础知识的掌握,还注重了综合能力的提高和创新思维的培养。
虽然有一定难度,但总体还是在适当的难度范围内。考生在考前要做好充分的准备,认真研究历年真题,以此提高自己的解题思路和应对能力。
有关数学高考题
三、17、1:f(x)=m乘n=根3Acosx乘sinx+二分之一乘A乘cos2x=A乘sin(2x+6分之π)
由题意得:当x取6分之π取最大值,把x代入上式得A=6
2:左移后得Y=6sin(2x+3分之π),缩短后得y=g(x)=6sin(4x+3分之π)
当x取24分之5π时y=负2分之1
当x取24分之1时y=1
答案:负2分之1,1
18、1:因AE垂直BD,由提可得AD垂直BD,可得第一问
2、建坐标系:CF为Z轴,CB为X轴,CD为Y轴,设CB=1
求出三角形FDB和DBC的法向量n1=(1,,1,,1),n2=(0,0,1)
由cos<n1,n2>=(就是课本上的公式,不好打)=3分之根3
19、1:P(A)=4分之3乘3分之1乘3分之1+4分之1乘3分之2乘3分之1+4分之1乘3分之1乘3分之2=36分之7
2:(图我竖着画)
X P
0 36分之1
1 12分之1
2 9分之1
3 3分之1
4 9分之1
5 3分之1
Ex=12分之41
2009年山东高考理科数学问答试题及答案
1. (05年广东卷)已知数列 满足 , , ….若 ,则(B)
(A) (B)3(C)4(D)5
2. (05年福建卷)3.已知等差数列 中, 的值是 ( A )
A.15 B.30 C.31 D.64
3. (05年湖南卷)已知数列 满足 ,则 = (B )
A.0 B. C. D.
4. (05年湖南卷)已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
= (C)
A.2 B. C.1 D.
5. (05年湖南卷)设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2005(x)=(C)
A.sinx B.-sinx C.cosx D.-cosx
6. (05年江苏卷)在各项都为正数的等比数列{an}中,首项a1=3 ,前三项和为21,则a3+ a4+ a5=(C )
( A ) 33 ( B ) 72 ( C ) 84 ( D )189
7. (05年全国卷II) 如果数列 是等差数列,则(B )
(A) (B) (C) (D)
8. (05年全国卷II) 11如果 为各项都大于零的等差数列,公差 ,则(B)
(A) (B) (C) (D)
9. (05年山东卷) 是首项 =1,公差为 =3的等差数列,如果 =2005,则序号 等于(C )
(A)667 (B)668 (C)669 (D)670
10. (05年上海)16.用n个不同的实数a1,a2,┄an可得n!个不同的排列,每个排列为一行写成 1 2 3
一个n!行的数阵.对第i行ai1,ai2,┄ain,记bi=- ai1+2ai2-3 ai3+┄+(-1)nnain, 1 3 2
i=1,2,3, ┄,n!.用1,2,3可你数阵如右,由于此数阵中每一列各数之和都 2 1 3
是12,所以,b1+b2+┄+b6=-12+2 12-3 12=-24.那么,在用1,2,3,4,5形成 2 3 1
的数阵中, b1+b2+┄+b120等于 3 1 2
3 2 1
[答]( C )
(A)-3600 (B) 1800 (C)-1080 (D)-720
11. (05年浙江卷) =( C )
(A) 2 (B) 4 (C) (D)0
12. (05年重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( C)
(A) 4;
(B) 5;
(C) 6;
(D) 7。
13、(04年浙江文理(3)) 已知等差数列 的公差为2,若 成等比数列, 则 =
(A) –4 (B) –6 (C) –8 (D) –10
14、(04年全国卷四文理6).等差数列 中, ,则此数列前20项和等于
A.160 B.180 C.200 D.220
15、(04年全国三文(4))等比数列 中 ,则 的前4项和为
A. 81 B. 120 C. 125 D. 192
16、(04年天津卷理8.) 已知数列 ,那么“对任意的 ,点 都在直线 上”是“ 为等差数列”的
A. 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要条件
17、(04年全国卷三理⑶)设数列 是等差数列, ,Sn是数列 的前n项和,则( )
A.S4<S5 B.S4=S5 C.S6<S5 D.S6=S5
18.(2003天津文)5.等差数列 ( C )
A.48 B.49 C.50 D.51
19.(2001天津)若Sn是数列{an}的前n项和,且 则 是 ( B )
(A)等比数列,但不是等差数列 (B)等差数列,但不是等比数列
(C)等差数列,而且也是等比数列 (D)既非等比数列又非等差数列
20、(04年湖北卷理8文9).已知数列{ }的前n项和 其中a、b是非零常数,则存在数列{ }、{ }使得( )
A. 为等差数列,{ }为等比数列
B. 和{ }都为等差数列
C. 为等差数列,{ }都为等比数列
D. 和{ }都为等比数列
21、(04年重庆卷理9). 若数列 是等差数列,首项 ,则使前n项和 成立的最大自然数n是:( )
A 4005 B 4006 C 4007 D 4008
二、填空题
1、(05年广东卷)
设平面内有n条直线 ,其中有且仅有两条直线互相平行,任意三角形不过同一点.若用 表示这n条直线交点的个数,则 _____5________;当n>4时, =__ ___________.
2、. (05年北京卷)已知n次多项式 ,
如果在一种算法中,计算 (k=2,3,4,…,n)的值需要k-1次乘法,计算 的值共需要9次运算(6次乘法,3次加法),那么计算 的值共需要 n(n+3) 次运算.
下面给出一种减少运算次数的算法: (k=0, 1,2,…,n-1).利用该算法,计算 的值共需要6次运算,计算 的
值共需要 2n 次运算.
3. (05年湖北卷)设等比数列 的公比为q,前n项和为S?n,若Sn+1,S?n,Sn+2成等差数列,则q的值为 -2 .
4. (05年全国卷II) 在 和 之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_______216 __.
5. (05年山东卷)
6. (05年上海)12、用 个不同的实数 可得到 个不同的排列,每个排列为一行写成一个 行的数阵。对第 行 ,记 , 。例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以, ,那么,在用1,2,3,4,5形成的数阵中, =_-1080_________。
7、计算: =_3 _________。
8. (05年天津卷)设 ,则
9、 (05年天津卷)在数列{an}中, a1=1, a2=2,且 ,
则 =_2600_ ___.
10. (05年重庆卷) = -3 .
11、(04年上海卷理12) 若干个能唯一确定一个数列的量称为该数列的“基本量”.设{an}是公比为q的无穷等比数列,下列{an}的四组量中,一定能成为该数列“基本量”的是第 组.(写出所有符合要求的组号)①S1与S2; ②a2与S3; ③a1与an; ④q与an.其中n为大于1的整数, Sn为{an}的前n项和.(①、④)
12(04年江苏卷15).设数列{an}的前n项和为Sn,Sn= (对于所有n≥1),且a4=54,则a1的数值是__2
13(04年北京文理(14))定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。已知数列 是等和数列,且 ,公和为5,那么 的值为___,且(文:这个数列的前21项和 的值为_____)(理:这个数列的前n项和 的计算公式为__( 3 ;(文:52)理:当n为偶数时, ;当n为奇数时, )
三、解答题
1.(05年北京卷)
设数列{an}的首项a1=a≠ ,且 ,
记 ,n==l,2,3,…?.
(I)求a2,a3;
(II)判断数列{bn}是否为等比数列,并证明你的结论;
(III)求 .
解:(I)a2=a1+ =a+ ,a3= a2= a+ ;
(II)∵ a4=a3+ = a+ , 所以a5= a4= a+ ,
所以b1=a1- =a- , b2=a3- = (a- ), b3=a5- = (a- ),
猜想:{bn}是公比为 的等比数列?
证明如下:
因为bn+1=a2n+1- = a2n- = (a2n-1- )= bn, (n∈N*)
所以{bn}是首项为a- , 公比为 的等比数列?
(III) .
2.(05年北京卷)数列{an}的前n项和为Sn,且a1=1, ,n=1,2,3,……,求
(I)a2,a3,a4的值及数列{an}的通项公式;
(II) 的值.
解:(I)由a1=1, ,n=1,2,3,……,得
, , ,
由 (n≥2),得 (n≥2),
又a2= ,所以an= (n≥2),
∴ 数列{an}的通项公式为 ;
(II)由(I)可知 是首项为 ,公比为 项数为n的等比数列,∴ =
3.(05年福建卷)
已知{ }是公比为q的等比数列,且 成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{ }是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
解:(Ⅰ)由题设
(Ⅱ)若
当 故
若
当
故对于
4. (05年福建卷)已知数列{an}满足a1=a, an+1=1+ 我们知道当a取不同的值时,得到不同的数列,如当a=1时,得到无穷数列:
(Ⅰ)求当a为何值时a4=0;
(Ⅱ)设数列{bn?}满足b1=-1, bn+1= ,求证a取数列{bn}中的任一个数,都可以得到一个有穷数列{an};
(Ⅲ)若 ,求a的取值范围.
(I)解法一:
故a取数列{bn}中的任一个数,都可以得到一个有穷数列{an}
5. (05年湖北卷)设数列 的前n项和为Sn=2n2, 为等比数列,且
(Ⅰ)求数列 和 的通项公式;
(Ⅱ)设 ,求数列 的前n项和Tn.
解:(1):当
故{an}的通项公式为 的等差数列.
设{bn}的通项公式为
故
(II)
两式相减得
6. (05年湖北卷)已知不等式 为大于2的整数, 表示不超过 的最大整数. 设数列 的各项为正,且满足
(Ⅰ)证明
(Ⅱ)猜测数列 是否有极限?如果有,写出极限的值(不必证明);
(Ⅲ)试确定一个正整数N,使得当 时,对任意b>0,都有
解:(Ⅰ)证法1:∵当
即
于是有
所有不等式两边相加可得
由已知不等式知,当n≥3时有,
∵
证法2:设 ,首先利用数学归纳法证不等式
(i)当n=3时, 由
知不等式成立.
(ii)假设当n=k(k≥3)时,不等式成立,即
则
即当n=k+1时,不等式也成立.
由(i)、(ii)知,
又由已知不等式得
(Ⅱ)有极限,且
(Ⅲ)∵
则有
故取N=1024,可使当n>N时,都有
7. (05年湖南卷)已知数列 为等差数列,且
(Ⅰ)求数列 的通项公式;
(Ⅱ)证明
(I)解:设等差数列 的公差为d.
由 即d=1.
所以 即
(II)证明因为 ,
所以
8. (05年湖南卷)自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响. 用xn表示某鱼群在第n年年初的总量,n∈N*,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn2成正比,这些比例系数依次为正常数a,b,c.
(Ⅰ)求xn+1与xn的关系式;
(Ⅱ)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不
要求证明)
(Ⅱ)设a=2,b=1,为保证对任意x1∈(0,2),都有xn>0,n∈N*,则捕捞强度b的
最大允许值是多少?证明你的结论.
解(I)从第n年初到第n+1年初,鱼群的繁殖量为axn,被捕捞量为bxn,死亡量为
(II)若每年年初鱼群总量保持不变,则xn恒等于x1, n∈N*,从而由(*)式得
因为x1>0,所以a>b.
猜测:当且仅当a>b,且 时,每年年初鱼群的总量保持不变.
(Ⅲ)若b的值使得xn>0,n∈N*
由xn+1=xn(3-b-xn), n∈N*, 知
0<xn<3-b, n∈N*, 特别地,有0<x1<3-b. 即0<b<3-x1.
而x1∈(0, 2),所以
由此猜测b的最大允许值是1.
下证 当x1∈(0, 2) ,b=1时,都有xn∈(0, 2), n∈N*
①当n=1时,结论显然成立.
②假设当n=k时结论成立,即xk∈(0, 2),
则当n=k+1时,xk+1=xk(2-xk?)>0.
又因为xk+1=xk(2-xk)=-(xk-1)2+1≤1<2,
所以xk+1∈(0, 2),故当n=k+1时结论也成立.
由①、②可知,对于任意的n∈N*,都有xn∈(0,2).
综上所述,为保证对任意x1∈(0, 2), 都有xn>0, n∈N*,则捕捞强度b的最大允许值是1.
9. (05年江苏卷)设数列{an}的前项和为 ,已知a1=1, a2=6, a3=11,且 , 其中A,B为常数.
(Ⅰ)求A与B的值;
(Ⅱ)证明数列{an}为等差数列;
(Ⅲ)证明不等式 .
解:(Ⅰ)由 , , ,得 , , .
把 分别代入 ,得
解得, , .
(Ⅱ)由(Ⅰ)知, ,即
, ①
又 . ②
②-①得, ,
即 . ③
又 . ④
④-③得, ,
∴ ,
∴ ,又 ,
因此,数列 是首项为1,公差为5的等差数列.
(Ⅲ)由(Ⅱ)知, .考虑
.
.
∴ .
即 ,∴ .
因此, .
10. (05年辽宁卷)已知函数 设数列 }满足 ,数列 }满足
(Ⅰ)用数学归纳法证明 ;
(Ⅱ)证明
解:(Ⅰ)证明:当 因为a1=1,
所以 ………………2分
下面用数学归纳法证明不等式
(1)当n=1时,b1= ,不等式成立,
(2)假设当n=k时,不等式成立,即
那么 ………………6分
所以,当n=k+1时,不等也成立。
根据(1)和(2),可知不等式对任意n∈N*都成立。 …………8分
(Ⅱ)证明:由(Ⅰ)知,
所以
…………10分
故对任意 ………………(12分)
11. (05年全国卷Ⅰ) 设正项等比数列 的首项 ,前n项和为 ,且 。
(Ⅰ)求 的通项;
(Ⅱ)求 的前n项和 。
解:(Ⅰ)由 得
即
可得
因为 ,所以 解得 ,因而
(Ⅱ)因为 是首项 、公比 的等比数列,故
则数列 的前n项和
前两式相减,得
即
12. (05年全国卷Ⅰ)
设等比数列 的公比为 ,前n项和 。
(Ⅰ)求 的取值范围;
(Ⅱ)设 ,记 的前n项和为 ,试比较 与 的大小。
解:(Ⅰ)因为 是等比数列,
当
上式等价于不等式组: ①
或 ②
解①式得q>1;解②,由于n可为奇数、可为偶数,得-1<q<1.
综上,q的取值范围是
(Ⅱ)由 得
于是
又∵ >0且-1< <0或 >0
当 或 时 即
当 且 ≠0时, 即
当 或 =2时, 即
13. (05年全国卷II) 已知 是各项为不同的正数的等差数列, 、 、 成等差数列.又 , .
(Ⅰ) 证明 为等比数列;
(Ⅱ) 如果数列 前3项的和等于 ,求数列 的首项 和公差 .
(I)证明:∵ 、 、 成等差数列
∴2 = + ,即
又设等差数列 的公差为 ,则( - ) = ( -3 )
这样 ,从而 ( - )=0
∵ ≠0
∴ = ≠0
∴
∴ 是首项为 = ,公比为 的等比数列。
(II)解。∵
∴ =3
∴ = =3
14.( 05年全国卷II)
已知 是各项为不同的正数的等差数列, 、 、 成等差数列.又 , .
(Ⅰ) 证明 为等比数列;
(Ⅱ) 如果无穷等比数列 各项的和 ,求数列 的首项 和公差 .
(注:无穷数列各项的和即当 时数列前 项和的极限)
解:(Ⅰ)设数列{an}的公差为d,依题意,由 得
即 ,得 因
当 =0时,{an}为正的常数列 就有
当 = 时, ,就有
于是数列{ }是公比为1或 的等比数列
(Ⅱ)如果无穷等比数列 的公比 =1,则当 →∞时其前 项和的极限不存在。
因而 = ≠0,这时公比 = ,
这样 的前 项和为
则S=
由 ,得公差 =3,首项 = =3
15. (05年全国卷III)
在等差数列 中,公差 的等差中项.
已知数列 成等比数列,求数列 的通项
解:由题意得: ……………1分
即 …………3分
又 …………4分
又 成等比数列,
∴该数列的公比为 ,………6分
所以 ………8分
又 ……………………………………10分
所以数列 的通项为 ……………………………12分
16. (05年山东卷)
已知数列 的首项 前 项和为 ,且
(I)证明数列 是等比数列;
(II)令 ,求函数 在点 处的导数 并比较 与 的大小.
解:由已知 可得 两式相减得
即 从而 当 时 所以 又 所以 从而
故总有 , 又 从而 即数列 是等比数列;
(II)由(I)知
因为 所以
从而 =
= - =
由上 - =
=12 ①
当 时,①式=0所以 ;
当 时,①式=-12 所以
当 时, 又
所以 即① 从而
17.(05年上海)本题共有2个小题,第1小题满分6分, 第2小题满分8分.
假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,
(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?
(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?
[解](1)设中低价房面积形成数列{an},由题意可知{an}是等差数列,
其中a1=250,d=50,则Sn=250n+ =25n2+225n,
令25n2+225n≥4750,即n2+9n-190≥0,而n是正整数, ∴n≥10.
到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米.
(2)设新建住房面积形成数列{bn},由题意可知{bn}是等比数列,
其中b1=400,q=1.08,则bn=400?(1.08)n-1?0.85.
由题意可知an>0.85 bn,有250+(n-1)?50>400?(1.08)n-1?0.85.
由计箅器解得满足上述不等式的最小正整数n=6.
到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.
18. (05年天津卷)
已知 .
(Ⅰ)当 时,求数列 的前n项和 ;
(Ⅱ)求 .
(18)解:(Ⅰ)当 时, .这时数列 的前 项和
. ①
①式两边同乘以 ,得 ②
①式减去②式,得
若 ,
,
若 ,
(Ⅱ)由(Ⅰ),当 时, ,则 .
当 时,
此时, .
若 , .
若 , .
19. (05年天津卷)若公比为c的等比数列{ }的首项 =1且满足: ( =3,4,…)。
(I)求c的值。
(II)求数列{ }的前 项和 。
20. (05年浙江卷)已知实数a,b,c成等差数列,a+1,了+1,c+4成等比数列,求a,b,c.
解:由题意,得 由(1)(2)两式,解得
将 代入(3),整理得
解得 或
故 , 或
经验算,上述两组数符合题意。
21(05年浙江卷)设点 ( ,0), 和抛物线 :y=x2+an x+bn(n∈N*),其中an=-2-4n- , 由以下方法得到:
x1=1,点P2(x2,2)在抛物线C1:y=x2+a1x+b1上,点A1(x1,0)到P2的距离是A1到C1上点的最短距离,…,点 在抛物线 :y=x2+an x+bn上,点 ( ,0)到 的距离是 到 上点的最短距离.
(Ⅰ)求x2及C1的方程.
(Ⅱ)证明{ }是等差数列.
解:(I)由题意,得 。
设点 是 上任意一点,则
令 则
由题意,得 即
又 在 上,
解得
故 方程为
(II)设点 是 上任意一点,则
令 ,则 .
由题意得g ,即
又
即 (*)
下面用数学归纳法证明
①当n=1时, 等式成立。
②假设当n=k时,等式成立,即
则当 时,由(*)知
又
即当 时,等式成立。
由①②知,等式对 成立。
是等差数列。
22. (05年重庆卷)数列{an}满足a1?1且8an?1?16an?1?2an?5?0 (n?1)。记 (n?1)。
(1) 求b1、b2、b3、b4的值;
(2) 求数列{bn}的通项公式及数列{anbn}的前n项和Sn。
解法一:
(I)
(II)因 ,
故猜想
因 ,(否则将 代入递推公式会导致矛盾)。
∵
故 的等比数列.
,
解法二:
(Ⅰ)由
整理得
(Ⅱ)由
所以
故
由 得
故
解法三:
(Ⅰ)同解法一
(Ⅱ)
从而
故
23. (05年重庆卷)数列{an}满足 .
(Ⅰ)用数学归纳法证明: ;
(Ⅱ)已知不等式 ,其中无理数e=2.71828….
(Ⅰ)证明:(1)当n=2时, ,不等式成立.
(2)假设当 时不等式成立,即
那么 . 这就是说,当 时不等式成立.
根据(1)、(2)可知: 成立.
(Ⅱ)证法一:
由递推公式及(Ⅰ)的结论有
两边取对数并利用已知不等式得
故
上式从1到 求和可得
即
(Ⅱ)证法二:
由数学归纳法易证 成立,故
令
取对数并利用已知不等式得
上式从2到n求和得
因
故 成立
24. (05年江西卷)已知数列{an}的前n项和Sn满足Sn-Sn-2=3 求数列{an}的通项公式.
解:方法一:先考虑偶数项有:
………
同理考虑奇数项有:
………
综合可得
方法二:因为
两边同乘以 ,可得:
令
所以
………
又
∴
∴
25. (05年江西卷)
已知数列
(1)证明
(2)求数列 的通项公式an.
解:(1)方法一 用数学归纳法证明:
1°当n=1时,
∴ ,命题正确.
2°假设n=k时有
则
而
又
∴ 时命题正确.
由1°、2°知,对一切n∈N时有
方法二:用数学归纳法证明:
1°当n=1时, ∴ ;
2°假设n=k时有 成立,
令 , 在[0,2]上单调递增,所以由假设
有: 即
也即当n=k+1时 成立,所以对一切
(2)下面来求数列的通项: 所以
,
又bn=-1,所以
26、(04年全国卷四文18).已知数列{ }为等比数列, (Ⅰ)求数列{ }的通项公式;
(Ⅱ)设 是数列{ }的前 项和,证明
解:(I)设等比数列{an}的公比为q,则a2=a1q, a5=a1q4. 依题意,得方程组a1q=6, a1q4=162.解此方程组,得a1=2, q=3.故数列{an}的通项公式为an=2?3n-1
(II)
27、(04年全国三文⒆)设公差不为零的等差数列{an},Sn是数列{an}的前n项和,且 , ,求数列{an}的通项公式.
解:设数列{an}的公差为d(d≠0),首项为a1,由已知得: .解之得: , 或 (舍)
28(04年全国卷三理(22))已知数列{an}的前n项和Sn满足:Sn=2an +(-1)n,n≥1.⑴写出求数列{an}的前3项a1,a2,a3;
⑵求数列{an}的通项公式;⑶证明:对任意的整数m>4,有
解:⑴当n=1时,有:S1=a1=2a1+(-1) a1=1;当n=2时,有:S2=a1+a2=2a2+(-1)2 a2=0;
当n=3时,有:S3=a1+a2+a3=2a3+(-1)3 a3=2;综上可知a1=1,a2=0,a3=2;
⑵由已知得: ,化简得:
上式可化为: ,故数列{ }是以 为首项, 公比为2的等比数列.故 ∴
数列{ }的通项公式为:
⑶由已知得:
. 故 ,( m>4)
29、(04年天津卷文20. )设 是一个公差为 的等差数列,它的前10项和 且 , , 成等比数列。(1)证明 ;(2)求公差 的值和数列 的通项公式
证明:因 , , 成等比数列,故 ,而 是等差数列,有 ,
于是 ,即 ,化简得
(2)解:由条件 和 ,得到 ,由(1), ,代入上式得 ,故 , ,
30(04年浙江卷文(17))、已知数列 的前n项和为 (Ⅰ)求 ;(Ⅱ)求证数列 是等比数列
解: (Ⅰ)由 ,得 ,∴ ,又 ,即 ,得 .(Ⅱ)当n>1时, 得 所以 是首项 ,公比为 的等比数列
31(04年广东卷17). 已知 成公比为2的等比数列( 也成等比数列. 求 的值
解:∵α,β,γ成公比为2的等比数列,∴β=2α,γ=4α,∵sinα,sinβ,sinγ成等比数列
当cosα=1时,sinα=0,与等比数列的首项不为零,故cosα=1应舍去,
32(04年湖南文20). 已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项的和,a1,2a7,3a4 成等差数列.(I)证明 12S3,S6,S12-S6成等比数列;(II)求和Tn=a1+2a4+3a7+…+na3n
(Ⅰ)证明 由 成等差数列, 得 ,即 变形得 所以 (舍去).由
得
所以12S3,S6,S12-S6成等比数列
(Ⅱ)解:
即 ①
①× 得:
所以
33、(04年江苏卷20).设无穷等差数列{an}的前n项和为Sn.(Ⅰ)若首项 32 ,公差 ,求满足 的正整数k;(Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有 成立
解:(1) ;(2) 或 或
34(04年全国卷一理15).已知数列{an},满足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项
( 答案 )
35(04年全国卷一理22).已知数列 ,且a2k=a2k-1+(-1)K, a2k+1=a2k+3k, 其中k=1,2,3,…….
(I)求a3, a5;(II)求{ an}的通项公式
解:(I)a2=a1+(-1)1=0,a3=a2+31=3. a4=a3+(-1)2=4, a5=a4+32=13, 所以,a3=3,a5=13.
(II) a2k+1=a2k+3k = a2k-1+(-1)k+3k, 所以a2k+1-a2k-1=3k+(-1)k, 同理a2k-1-a2k-3=3k-1+(-1)k-1,
……a3-a1=3+(-1).
所以(a2k+1-a2k-1)+(a2k-1-a2k-3)+…+(a3-a1)=(3k+3k-1+…+3)+[(-1)k+(-1)k-1+…+(-1)],
由此得a2k+1-a1= (3k-1)+ [(-1)k-1],于是a2k+1=
a2k= a2k-1+(-1)k= (-1)k-1-1+(-1)k= (-1)k=1
{an}的通项公式为: 当n为奇数时,an?= 当n为偶数时,
36(04年全国卷一文17). 等差数列{ }的前n项和记为Sn.已知
(Ⅰ)求通项 ;(Ⅱ)若Sn=242,求n
解:(Ⅰ)由 得方程组 解得
所以 (Ⅱ)由 得方程
解得
37(04年全国卷二理(19))、数列{an}的前n项和记为Sn,已知a1=1,an+1= Sn(n=1,2,3,…)
证明:(Ⅰ)数列{ }是等比数列;(Ⅱ)Sn+1=4an
证(I)由a1=1,an+1= Sn(n=1,2,3,…),知a2= S1=3a1, , ,∴
又an+1=Sn+1-Sn(n=1,2,3,…),则Sn+1-Sn= Sn(n=1,2,3,…),∴nSn+1=2(n+1)Sn, (n=1,2,3,…).故数列{ }是首项为1,公比为2的等比数列
证(II) 由(I)知, ,于是Sn+1=4(n+1)? =4an(n )
又a2=3S1=3,则S2=a1+a2=4=4a1,因此对于任意正整数n≥1都有Sn+1=4an
38(04年全国卷二文(17))、已知等差数列{an},a2=9,a5 =21
(Ⅰ)求{an}的通项公式;(Ⅱ)令bn= ,求数列{bn}的前n项和Sn
解:a5-a2=3d,d=4,an=a2+(n-2)d=9+4(n-2)=4n+1;{bn}是首项为32公比为16的等比数列,Sn= .
2009年普通高等学校招生全国统一考试(山东卷)
理科数学
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试时间120分钟。考试结束后,将本试卷和答题卡一并交回.
注意事项:
1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.,并将准考证号条形码粘贴在答题卡上指定位置。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上; 如需改动,先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.。
参考公式:
柱体的体积公式V=Sh,其中S是柱体的底面积,h是锥体的高。
锥体的体积公式V= ,其中S是锥体的底面积,h是锥体的高。
如果事件A,B互斥,那么P(A+B)=P(A)+P(B);R如果事件A,B独立,那么P(AB)=P(A)P(B).
事件A在一次试验中发生的概率是 ,那么 次独立重复试验中事件A恰好发生 次的概率: .
第Ⅰ卷(共60分)
一、选择题:本大题共12小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合 , ,若 ,则 的值为( )
A.0 B.1 C.2 D.4
解析:∵ , , ∴ ∴ ,故选D.
答案:D
命题立意:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.
2.复数 等于( ).
A. B. C. D.
2. 解析: ,故选C. w.w.w.k.s.5.u.c.o.m
答案:C
命题立意:本题考查复数的除法运算,分子、分母需要同乘以分母的共轭复数,把分母变为实数,将除法转变为乘法进行运算.
3.将函数 的图象向左平移 个单位, 再向上平移1个单位,所得图象的函数解析式是( ).
A. B. C. D.
3. 解析:将函数 的图象向左平移 个单位,得到函数 即 的图象,再向上平移1个单位,所得图象的函数解析式为 ,故选B.
答案:B
命题立意:本题考查三角函数的图象的平移和利用诱导公式及二倍角公式进行化简解析式的基本知识和基本技能,学会公式的变形. w.w.w.k.s.5.u.c.o.m
4. 一空间几何体的三视图如图所示,则该几何体的体积为( ).
A. B. C. D.
解析:该空间几何体为一圆柱和一四棱锥组成的,
圆柱的底面半径为1,高为2,体积为 ,四棱锥的底面
边长为 ,高为 ,所以体积为
所以该几何体的体积为 .
答案:C
命题立意:本题考查了立体几何中的空间想象能力,
由三视图能够想象得到空间的立体图,并能准确地
计算出.几何体的体积.
5. 已知α,β表示两个不同的平面,m为平面α内的
一条直线,则“ ”是“ ”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:由平面与平面垂直的判定定理知如果m为平面α内的
一条直线, ,则 ,反过来则不一定.所以“ ”是“ ”的必要不充分条件. w.w.w.k.s.5.u.c.o.m
答案:B.
命题立意:本题主要考查了立体几何中垂直关系的判定和充分必要条件的概念.
6. 函数 的图像大致为( ).
解析:函数有意义,需使 ,其定义域为 ,排除C,D,又因为 ,所以当 时函数为减函数,故选A. w.w.w.k.s.5.u.c.o.m
答案:A.
命题立意:本题考查了函数的图象以及函数的定义域、值域、单调性等性质.本题的难点在于给出的函数比较复杂,需要对其先变形,再在定义域内对其进行考察其余的性质.
7.设P是△ABC所在平面内的一点, ,则( )
A. B. C. D.
解析:因为 ,所以点P为线段AC的中点,所以应该选B。
答案:B。
命题立意:本题考查了向量的加法运算和平行四边形法则,
可以借助图形解答。
8.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的w.w.w.k.s.5.u.c.o.m
产品净重(单位:克)数据绘制的频率分布直方图,其中产品
净重的范围是[96,106],样本数据分组为[96,98),[98,100),
[100,102),[102,104),[104,106],已知样本中产品净重小于
100克的个数是36,则样本中净重大于或等于98克并且
小于104克的产品的个数是( ).
A.90 B.75 C. 60 D.45
解析:产品净重小于100克的概率为(0.050+0.100)×2=0.300,
已知样本中产品净重小于100克的个数是36,设样本容量为 ,
则 ,所以 ,净重大于或等于98克并且小于
104克的产品的概率为(0.100+0.150+0.125)×2=0.75,所以样本
中净重大于或等于98克并且小于104克的产品的个数是
120×0.75=90.故选A.
答案:A
命题立意:本题考查了统计与概率的知识,读懂频率分布直方图,会计算概率以及样本中有关的数据.
9. 设双曲线 的一条渐近线与抛物线y=x +1 只有一个公共点,则双曲线的离心率为( ). w.w.w.k.s.5.u.c.o.m
A. B. 5 C. D.
解析:双曲线 的一条渐近线为 ,由方程组 ,消去y,得 有唯一解,所以△= ,
所以 , ,故选D. w.w.w.k.s.5.u.c.o.m
答案:D.
命题立意:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.
10. 定义在R上的函数f(x)满足f(x)= ,则f(2009)的值为( )
A.-1 B. 0 C.1 D. 2
解析:由已知得 , , ,
, ,
, , ,
所以函数f(x)的值以6为周期重复性出现.,所以f(2009)= f(5)=1,故选C.
答案:C.
命题立意:本题考查归纳推理以及函数的周期性和对数的运算.
11.在区间[-1,1]上随机取一个数x, 的值介于0到 之间的概率为( ).
A. B. C. D. w.w.w.k.s.5.u.c.o.m
解析:在区间[-1,1]上随机取一个数x,即 时,要使 的值介于0到 之间,需使 或 ∴ 或 ,区间长度为 ,由几何概型知 的值介于0到 之间的概率为 .故选A.
答案:A
命题立意:本题考查了三角函数的值域和几何概型问题,由自变量x的取值范围,得到函数值 的范围,再由长度型几何概型求得.
12. 设x,y满足约束条件 ,w.w.w.k.s.5.u.c.o.m
若目标函数z=ax+by(a>0,b>0)的值是最大值为12,
则 的最小值为( ).
A. B. C. D. 4
解析:不等式表示的平面区域如图所示阴影部分,当直线ax+by= z(a>0,b>0)
过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,
目标函数z=ax+by(a>0,b>0)取得最大12,
即4a+6b=12,即2a+3b=6, 而 = ,故选A.
答案:A
命题立意:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值,对于形如已知2a+3b=6,求 的最小值常用乘积进而用基本不等式解答. w.w.w.k.s.5.u.c.o.m
第 卷
二、填空题:本大题共4小题,每小题4分,共16分。
13.不等式 的解集为 .
解析:原不等式等价于不等式组① 或②
或③ 不等式组①无解,由②得 ,由③得 ,综上得 ,所以原不等式的解集为 . w.w.w.k.s.5.u.c.o.m
答案:
命题立意:本题考查了含有多个绝对值号的不等式的解法,需要根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案.本题涉及到分类讨论的数学思想.
14.若函数f(x)=a -x-a(a>0且a 1)有两个零点,则实数a的取值范围是 .
解析: 设函数 且 和函数 ,则函数f(x)=a -x-a(a>0且a 1)有两个零点, 就是函数 且 与函数 有两个交点,由图象可知当 时两函数只有一个交点,不符合,当 时,因为函数 的图象过点(0,1),而直线 所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a的取值范围是
答案: w.w.w.k.s.5.u.c.o.m
命题立意:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象解答.
15.执行右边的程序框图,输出的T= .
解析:按照程序框图依次执行为S=5,n=2,T=2;
S=10,n=4,T=2+4=6;S=15,n=6,T=6+6=12;
S=20,n=8,T=12+8=20;S=25,n=10,T=20+10=30>S,输出T=30
答案:30
命题立意:本题主要考查了循环结构的程序框图,一般都可以
反复的进行运算直到满足条件结束,本题中涉及到三个变量,
注意每个变量的运行结果和执行情况.
16.已知定义在R上的奇函数 ,满足 ,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间 上有四个不同的根 ,则 w.w.w.k.s.5.u.c.o.m
解析:因为定义在R上的奇函数,满足 ,所以 ,所以, 由 为奇函数,所以函数图象关于直线 对称且 ,由 知 ,所以函数是以8为周期的周期函数,又因为 在区间[0,2]上是增函数,所以 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间 上有四个不同的根 ,不妨设 由对称性知 所以
答案:-8
命题立意:本题综合考查了函数的奇偶性,单调性,
对称性,周期性,以及由函数图象解答方程问题,
运用数形结合的思想和函数与方程的思想解答问题.
三、解答题:本大题共6分,共74分。
17.(本小题满分12分)设函数f(x)=cos(2x+ )+sin x.
(1) 求函数f(x)的最大值和最小正周期.
(2) 设A,B,C为 ABC的三个内角,若cosB= , ,且C为锐角,求sinA.
解: (1)f(x)=cos(2x+ )+sin x.=
所以函数f(x)的最大值为 ,最小正周期 . w.w.w.k.s.5.u.c.o.m
(2) = =- , 所以 , 因为C为锐角, 所以 ,
又因为在 ABC 中, cosB= , 所以 , 所以w.w.w.k.s.5.u.c.o.m
.
命题立意:本题主要考查三角函数中两角和差的弦函数公式、二倍角公式、三角函数的性质以及三角形中的三角关系.
(18)(本小题满分12分)
如图,在直四棱柱ABCD-A B C D 中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2, AA =2, E、E 、F分别是棱AD、AA 、AB的中点。
(1) 证明:直线EE //平面FCC ;
(2) 求二面角B-FC -C的余弦值。w.w.w.k.s.5.u.c.o.m
解法一:(1)在直四棱柱ABCD-A B C D 中,取A1B1的中点F1,
连接A1D,C1F1,CF1,因为AB=4, CD=2,且AB//CD,
所以CD=//A1F1,A1F1CD为平行四边形,所以CF1//A1D,
又因为E、E 分别是棱AD、AA 的中点,所以EE1//A1D,
所以CF1//EE1,又因为 平面FCC , 平面FCC ,
所以直线EE //平面FCC .
(2)因为AB=4, BC=CD=2, 、F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱柱ABCD-A B C D 中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F内作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC -C的一个平面角, 在△BCF为正三角形中, ,在Rt△CC1F中, △OPF∽△CC1F,∵ ∴ , w.w.w.k.s.5.u.c.o.m
在Rt△OPF中, , ,所以二面角B-FC -C的余弦值为 .
解法二:(1)因为AB=4, BC=CD=2, F是棱AB的中点,
所以BF=BC=CF,△BCF为正三角形, 因为ABCD为
等腰梯形,所以∠BAC=∠ABC=60°,取AF的中点M,
连接DM,则DM⊥AB,所以DM⊥CD,
以DM为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,
,则D(0,0,0),A( ,-1,0),F( ,1,0),C(0,2,0),
C1(0,2,2),E( , ,0),E1( ,-1,1),所以 , , 设平面CC1F的法向量为 则 所以 取 ,则 ,所以 ,所以直线EE //平面FCC . w.w.w.k.s.5.u.c.o.m
(2) ,设平面BFC1的法向量为 ,则 所以 ,取 ,则 ,
, , w.w.w.k.s.5.u.c.o.m
所以 ,由图可知二面角B-FC -C为锐角,所以二面角B-FC -C的余弦值为 . w.w.w.k.s.5.u.c.o.m
命题立意:本题主要考查直棱柱的概念、线面位置关系的判定和二面角的计算.考查空间想象能力和推理运算能力,以及应用向量知识解答问题的能力.
(19)(本小题满分12分)
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q 为0.25,在B处的命中率为q ,该同学选择先在A处投一球,以后都在B处投,用 表示该同学投篮训练结束后所得的总分,其分布列为
0 2 3 4 5
w.w.w.k.s.5.u.c.o.m p
0.03 P1 P2 P3 P4
(1) 求q 的值;w.w.w.k.s.5.u.c.o.m
(2) 求随机变量 的数学期望E ;
(3) 试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。
解:(1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25, , P(B)= q , .
根据分布列知: =0时 =0.03,所以 ,q =0.8.
(2)当 =2时, P1= w.w.w.k.s.5.u.c.o.m
=0.75 q ( )×2=1.5 q ( )=0.24
当 =3时, P2 = =0.01,
当 =4时, P3= =0.48,
当 =5时, P4=
=0.24
所以随机变量 的分布列为
0 2 3 4 5
p 0.03 0.24 0.01 0.48 0.24
随机变量 的数学期望
(3)该同学选择都在B处投篮得分超过3分的概率为
;
该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.
由此看来该同学选择都在B处投篮得分超过3分的概率大.
命题立意:本题主要考查了互斥事件的概率,相互独立事件的概率和数学期望,以及运用概率知识解决问题的能力.
(20)(本小题满分12分)
等比数列{ }的前n项和为 , 已知对任意的 ,点 ,均在函数 且 均为常数)的图像上.
(1)求r的值;
(11)当b=2时,记
证明:对任意的 ,不等式 成立
解:因为对任意的 ,点 ,均在函数 且 均为常数的图像上.所以得 ,当 时, ,当 时, ,又因为{ }为等比数列,所以 ,公比为 ,
(2)当b=2时, ,
则 ,所以
下面用数学归纳法证明不等式 成立.
① 当 时,左边= ,右边= ,因为 ,所以不等式成立.
② 假设当 时不等式成立,即 成立.则当 时,左边=
所以当 时,不等式也成立.
由①、②可得不等式恒成立.
命题立意:本题主要考查了等比数列的定义,通项公式,以及已知 求 的基本题型,并运用数学归纳法证明与自然数有关的命题,以及放缩法证明不等式.
(21)(本小题满分12分)
两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧 上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在 的中点时,对城A和城B的总影响度为0.065.
(1)将y表示成x的函数;
(11)讨论(1)中函数的单调性,并判断弧 上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。
解法一:(1)如图,由题意知AC⊥BC, ,
其中当 时,y=0.065,所以k=9
所以y表示成x的函数为
(2) , ,令 得 ,所以 ,即 ,当 时, ,即 所以函数为单调减函数,当 时, ,即 所以函数为单调增函数.所以当 时, 即当C点到城A的距离为 时, 函数 有最小值.
解法二: (1)同上.
(2)设 ,
则 , ,所以
当且仅当 即 时取”=”.
下面证明函数 在(0,160)上为减函数, 在(160,400)上为增函数.
设0<m1<m2<160,则
,
因为0<m1<m2<160,所以4 >4×240×240
9 m1m2<9×160×160所以 ,
所以 即 函数 在(0,160)上为减函数.
同理,函数 在(160,400)上为增函数,设160<m1<m2<400,则
因为1600<m1<m2<400,所以4 <4×240×240, 9 m1m2>9×160×160
所以 ,
所以 即 函数 在(160,400)上为增函数.
所以当m=160即 时取”=”,函数y有最小值,
所以弧 上存在一点,当 时使建在此处的垃圾处理厂对城A和城B的总影响度最小.
命题立意:本题主要考查了函数在实际问题中的应用,运用待定系数法求解函数解析式的 能力和运用换元法和基本不等式研究函数的单调性等问题.
(22)(本小题满分14分)
设椭圆E: (a,b>0)过M(2, ) ,N( ,1)两点,O为坐标原点,
(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 ?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
解:(1)因为椭圆E: (a,b>0)过M(2, ) ,N( ,1)两点,
所以 解得 所以 椭圆E的方程为
(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 ,设该圆的切线方程为 解方程组 得 ,即 ,
则△= ,即
, 要使 ,需使 ,即 ,所以 ,所以 又 ,所以 ,所以 ,即 或 ,因为直线 为圆心在原点的圆的一条切线,所以圆的半径为 , , ,所求的圆为 ,此时圆的切线 都满足 或 ,而当切线的斜率不存在时切线为 与椭圆 的两个交点为 或 满足 ,综上, 存在圆心在原点的圆 ,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 .
因为 ,
所以 ,
,
①当 时
因为 所以 ,
所以 ,
所以 当且仅当 时取”=”.
② 当 时, .
③ 当AB的斜率不存在时, 两个交点为 或 ,所以此时 ,
综上, |AB |的取值范围为 即:
命题立意:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系.
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。