高考卷2数学答案,高考卷数学答案详细解析2022理科天津卷
1.2023新高考2卷数学难吗
2.谁有09年福建省理科高考数学卷的选择题及答案。
3.2010高考全国卷2数学理科选择题12题,求详解
4.求数学大神帮忙,解答一道高考数学题,2014年全国卷新课标2高考文科18题。下面是题目
5.福建省近几年高考卷 数学
6.2006年高考理科数学试题最后一题及答案详解(全国卷2)
7.跪求2004~2009年高考全国二卷数学,语文,英语,理综的试题及答案
2022年全国乙卷高考数学试题答案
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题答案,希望可以提供给大家进行参考和借鉴。
2022年全国乙卷高考数学试题答案
全面认识你自己
认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。
首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏差。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。
其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。
最后是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。
高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个最佳的结合点,考生才能在自己的人生路上迈出正确、关键的一步。
与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。
此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。
在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。
考生个人特征情况
考生个人特征如兴趣、特长、志向、能力、职业价值观等。
兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。
特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真做一次自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。
志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。
能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个绝对化的考虑因素。
职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为第一位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、社会地位、稳定性等。在进行专业选择时,考生家庭中的成员最好就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。
2022年全国乙卷高考数学试题答案相关文章:
★2022高考全国乙卷试题及答案
★2022高考理科数学乙卷试题解析
★2022年全国乙卷高考理科数学
★2022年全国乙卷文科数学卷真题公布
★2022年高考数学试题及答案
★2022年全国乙卷高考数学真题及答案
★2022年全国理科数学卷试题答案及解析
★2022全国Ⅰ卷高考数学试题及参考答案一览
★2022年英语全国乙卷试题及答案
★2022年高考乙卷数学真题试卷
2022年全国新高考1卷数学试题及答案解析
数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案解析。希望可以帮助大家。
全国新高考1卷数学试题
全国新高考1卷数学试题答案解析
高考数学复习主干知识点汇总:
因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:
1.函数
函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。
2.三角函数
三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。
3.立体几何
承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。
4.数列与极限
数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。
5.解析几何
直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。
2022年全国新高考1卷数学试题及答案解析相关文章:
★2022高考甲卷数学真题试卷及答案
★2022年新高考Ⅱ卷数学真题试卷及答案
★2022高考全国甲卷数学试题及答案
★2022高考数学大题题型总结
★2022全国乙卷理科数学真题及答案解析
★2022年全国乙卷高考数学试卷
★2022年新高考1卷语文真题及答案解析
★全国新高考一卷2022语文试题及答案一览
★2022江西高考文科数学试题及答案
★2022全国新高考II卷语文试题及答案解析
2022年全国新高考1卷数学试题及答案详解
高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案详解。希望可以帮助大家。
全国新高考1卷数学试题
全国新高考1卷数学答案详解
2022高考数学知识点总结
1.定义:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式
②根据具体问题中的数量关系列不等式并解决简单实际问题
③用数轴表示一元一次不等式的解集
考点一:集合与简易逻辑
集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.
一、排列
1定义
从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.
2排列数的公式与性质
排列数的公式:Amn=n
特例:当m=n时,Amn=n!=n×3×2×1
规定:0!=1
二、组合
1定义
从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合
从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。
2比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
三、排列组合与二项式定理知识点
1.计数原理知识点
①乘法原理:N=n1·n2·n3·nM②加法原理:N=n1+n2+n3++nM
2.排列与组合
Anm=n-=n!/!Ann=n!
Cnm=n!/!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=!-k!
3.排列组合混合题的解题原则:先选后排,先分再排
排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
捆绑法
插空法间接法和去杂法等等
在求解排列与组合应用问题时,应注意:
把具体问题转化或归结为排列或组合问题;
通过分析确定运用分类计数原理还是分步计数原理;
分析题目条件,避免“选取”时重复和遗漏;
列出式子计算和作答.
经常运用的数学思想是:
①分类讨论思想;②转化思想;③对称思想.
4.二项式定理知识点:
①n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3++Cnran-rbr+-+Cnn-1abn-1+Cnnbn
特别地:n=1+Cn1x+Cn2x2++Cnrxr++Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
二项式系数在中间。
所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4++Cnr++Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1
③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
6.注意二项式系数与项的系数的区别,在求某几项的系数的和时注意赋值法的应用。
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合
1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2。整式不等式的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差→变形→判断符号。
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力
2022年全国新高考1卷数学试题及答案详解相关文章:
★2022高考北京卷数学真题及答案解析
★2022高考甲卷数学真题试卷及答案
★2022北京卷高考文科数学试题及答案解析
★2022高考全国甲卷数学试题及答案
★2022年新高考Ⅱ卷数学真题试卷及答案
★2022全国乙卷理科数学真题及答案解析
★2022高考数学大题题型总结
★2022年高考全国一卷作文预测及范文
★2022年高考数学必考知识点总结最新
★2022年全国乙卷高考数学试卷
2022年北京高考数学试题及参考答案
相比很多同学在高考过后的第一时间就是找答案核对,虽然知道这样可能会影响心情,但还是忍不住想要对照答案。下面是我为大家整理的关于2022年北京高考数学试题及参考答案,如果喜欢可以分享给身边的朋友喔!
2022年北京高考数学试题
2022年北京高考数学试题参考答案
高考数学答题策略
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
一、会做与得分的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。只有重视解题过程的语言表述,会做的题才会得分。
二、审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。其实只要耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题的方向。
三、难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的'顺序作答。这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
四、快与准的关系
在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
2022年北京高考数学试题及参考答案相关文章:
★2022数学高考题及答案
★2022新高考数学Ⅰ卷试卷及参考答案
★2022年全国Ⅰ卷高考数学试题及参考答案公布
★2022全国一卷高考数学试题及答案
★2022新高考全国一卷数学试卷及答案解析
★2022年高考数学试题及答案
★2022全国新高考Ⅰ卷数学卷完整试题及答案一览
★2022新高考全国一卷数学试卷答案解析
★2022年高考数学全国乙卷试题答案
★2022新高考数学试题及答案详解
2023新高考2卷数学难吗
今天小编辑给各位分享2022数学高考试卷的知识,其中也会对江苏2022数学高考试卷分析解答,如果能解决你想了解的问题,关注本站哦。
你如何评价2022新高考数学试卷,今年题目难度如何,有哪些变化?
今年的高考数学居然可以说是地狱级别的难度,而且这次的试卷让很多人都非常的崩溃,也让很多人觉得这种题目根本就让人看不下去,让人非常的愤怒。题型发生了变化,出题的模式也发生了变化,对于一些题目的题型发生了改变,而且还引用了一些实时的新闻,能够通过一些新闻来增加答题的具体性,也能够吸引人们的关注。
2022全国新高考1卷数学难吗?压轴题有何立意?
对于这个高考的试卷题是非常的难的,因为这次的高考的试卷的题目基本上都是来自于那些非常偏非常难的题,那么正是为了测试这些学生的水平而设立的题目,因为正式的考试是为了选拔这些学生的一次考试,那么这仍然是选择了那些非常偏的题,那么一般来说这些学生在上课的时候都是不会去做那种非常偏非常难的题,那么出现了这种非常难非常偏的题的话,那么这些学生就会遇到了困难,至于压轴题的话,压轴题就是更难的,一般压轴题都需要考验一个学生的逻辑思维能力,去做这个题,那么才能够把这个题目给做出来的
选拔性考试
一般来说这个高考的数学试题呢,那么都是以选拔这些学生的一种难度来出的那么自然人是非常的难的,特别考验这些学生的逻辑思维能力,以运用这个知识的这个能力,并不像填空题一样,只要把这个答案填进去就OK了那么一般来说这数学试题呢,都是很考验这些学生的数学逻辑思维,而运用这个知识的能力的,而且是需要灵活的运用这个知识去写这些题目的,所以说就在这个高考的数学试题是非常的难的
压轴题的意义
一般来说呢,压轴题更是最难的一道题,毕竟是压轴的嘛,所以说难度是升了一个阶段的,那么也是很正常,毕竟一张试卷的压轴题,无论是什么试卷的压轴题那么都是非常的难审正常的事情,因为到了压轴题之后那么一般都是考验学生的灵活运用知识的逻辑思维能力,基本上都要运用上去,那么才能够把这道题给做出来,而且所需要的知识量也是非常的大的
总的来说那么高考数学试卷的题目都是非常的难,是考验这些学生灵活的运用知识的一个题目,那么需要这些学生非常的努力的去运用自己所学的知识,不仅仅所需要的知识,还需要自己灵活运用知识的能力,那么才能够将这些题目做出来
2022年天津高考数学试卷及答案
为了帮助大家全面了解2022年天津高考数学卷,大家就能知道2022年天津高考数学难不难?有哪些题型?考了哪些知识点?以及数学试卷的解题思路和方法有哪些?下面是我给大家带来的2022年天津高考数学试卷及答案,以供大家参考!
2022年天津高考数学试卷
截止目前,2022年天津高考数学试卷还未出炉,待高考结束后,力力会第一时间更新2022年天津高考数学试卷,供大家对照、估分、模拟使用。
2022年天津高考数学答案解析
截止目前,2022年天津高考数学答案解析还未出炉,待高考结束后,力力会第一时间更新2022年天津高考数学答案解析,供大家对照、估分、模拟使用。
高考录取规则及志愿设置
志愿设置
提前艺术、体育本科设置1个第一院校志愿和1个第二院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;
提前一批本科和提前二批本科批次分别设置1个第一院校志愿、1个第二院校志愿和1个第三院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
本科面向贫困地区专项计划第一、二批次分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;
免费医学定向生、农科生院校设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。
第一批本科批次分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;
第一批本科特殊类型招生分公示类和非公示类各设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。
第一批本科艺术本科院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科类批次设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科艺术、体育类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科C类艺术、体育类院校分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科特殊类型招生各设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。
高本贯通批次设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
高本贯通艺术类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。
提前专科批次设置1个第一院校志愿、1个第二院校志愿和1个第三院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
专科批次设置9个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H、I,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
专科批次艺术、体育类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。
录取原则
高校招生实行两种投档模式。
平行志愿投档模式:根据“考生之间,分数优先;考生志愿,遵循顺序”的投档原则,先分科类将考生按成绩从高分到低分排序,再按照顺序对考生逐个进行投档;对某考生投档时,遵循该考生填报的多个平行志愿院校依次检索判断,当检索到该考生填报的某个院校有调档缺额时,即将该考生档案投放到该院校。
实行平行志愿的批次和科类:本科面向贫困地区专项计划批、第一批本科、第二批本科、高本贯通批、专科批的文史和理工两个科类。
平行志愿投档模式的考生成绩排序规则是:
1)先按考生特征总分从高到低排序;
2)考生总分相同时,再按单科成绩依次从高到低排序。
单科成绩排序的科目顺序是:
文史类:①语文;②数学;③文科综合
理工类:①数学;②语文;③理科综合
3)上年被录取后未报到考生将排在同分数的最后,考生总分相同时,按单科成绩依次从高到低排序。
非平行志愿投档模式:根据“志愿优先”的投档原则,先投第一志愿,当院校第一志愿生源不足时,再依次投第二志愿、第三志愿。
2022年天津高考数学试卷及答案相关文章:
★2022年高考数学答题技巧
★2022全国各省市高考使用全国几卷
★2022全国高考试卷分几类
★2022年北京高考数学试卷
★2022高考数学卷分数分布一览
★2022年高考数学必考知识点总结最新
★高三数学教学2021工作总结模板
★2022年高考时间及考试科目安排表公布
★2022年天津高考一分一段预览表
★2022天津高考一分一段重磅揭晓
2022新高考全国卷的数学题是什么难度?有多少基础分?
随着高考的结束,很多考生都在抱怨本次高考中的数学考试难度非常之大,而很多考生说这次考试想拿数学满分是不可能的事情。而根据权威部门所发布的消息,2022年新高考全国卷的数学题处于中上等难度,相比往年的高考难度增加了一些,而这样做的目的就是加大考生与考生之间的竞争。而高考中的数学题的基础分大概在30~50分之间,因为这个基础分是最基本的一些题型,只要考生在上课期间认真听课,认真复习这些分都能拿满。
一、2022年新高考全国卷的数学题处于中上等难度
根据相关媒体报道,本次出题是由全国的高考专家库出题的,而这次高考数学题的难度为中上等,要比往年的高考难度增加了许多。而本年度的高考很多考生都在反映数学题非常难,都是一些在课程上没有见过的题型,而这又从侧面反映了学校在教课期间并没有对数学题的一些知识内容进行扩展,而只是把重点放在了书本上,所以从这一点上考生们没有接触到新型题型,自然会感觉很难。二、基础分大概在30~50分
一般来讲,全国数学题考试卷总分在150分,而基础分都会设置在30分到50分左右,而根据专家透露的消息,2022年的高考基础分在30分到50分左右,这些题型在课本上都是能见得到的,只要考生在上课期间认真听讲,认真做笔记那么是完全可以拿到这些分数的,因为这是最基础的一种题型。三、总结
总的来说,本年度的高考确实很难,甚至把深圳中学的一个学霸都给考哭了,而很多数学教师在做数学高考试卷的时候都感觉很难,通常要花费两个小时以上才能把所有题型做完,并且还拿不到满分。而还有考生反映往年的高考都有人保证数学成绩能拿满分,而今年的考生则反映没有人敢保证敢拿数学成绩的满分,这就直接表明本年度高考数学这个难度是很难的。
2022年浙江高考数学试卷
为了帮助大家全面了解2022年浙江高考数学卷,这样,大家就能知道2022年浙江高考数学难不难?有哪些题型?考了哪些知识点?以及数学试卷的解题思路和方法有哪些?下面是我给大家带来的2022年浙江高考数学试卷及答案,以供大家参考!
2022年浙江高考数学试卷
截止目前,2022年浙江高考数学试卷还未出炉,待高考结束后,力力会第一时间更新2022年浙江高考数学试卷,供大家对照、估分、模拟使用。
2022年浙江高考数学答案解析
截止目前,2022年浙江高考数学答案解析还未出炉,待高考结束后,力力会第一时间更新2022年浙江高考数学答案解析,供大家对照、估分、模拟使用。
高考填报志愿的技巧
各批次志愿填报注意落差
“平行志愿”不是“平等志愿”,也不是“平行录取”。考生填报的平行志愿有自然顺序,并不是只要成绩达到所填报的4个平行志愿院校录取条件,就可能会被4所院校同时录取。实际上,只要考生档案投到一所志愿高校后,就不会到其他高校,对每个考生而言投档录取机会只有一次。
注重学校录取平均分
考生在填报志愿时,首先要了解自己在学校、区所处的位次,这个是最关键的参考因素。可根据自己一模、二模的成绩,看看自己在区、学校的排名,并排一排自己在全市的位次所在。咨询老师往年该名次段考生的去向,掌握自己可能被录取的学校范围,然后再根据个人的兴趣爱好以及家庭背景等因素,在这个范围内做选择。
避免被调剂慎写“不服从调剂”
选学校退一步,选专业进一步高考填报志愿中,究竟是选学校,还是选专业,是考生和家长最难把握的问题。尤其是对各批次的中分段、低分段考生来说,这一难题最为显现。选好的学校,有可能要舍弃好专业:想填个自己喜欢的专业,学校上就得有所顾忌,因为好学校的好专业肯定是要“挤破头”的。
高考先填志愿还是先出分数
现在都是先高考完知道分数之后再填志愿。高考考生填志愿时所报考的学校层次要根据考生所在省份的分数线决定,所以现在一般都是先出成绩再填相关志愿。
在查到高考分数之后,就可以提前预估自己分数可以报的学校和专业,现在是填报的平行志愿,考生可以一次性填报多所高校,多个专业,按照惯例,填报志愿一般是在出分后,在这之前,考生们要确定好自己的意向学校和专业,认真考虑,不要盲目或者瞎填报。
填报高考志愿时,一定要看清本省志愿及录取方式,是平行志愿还是顺序志愿。现在大部分地区都采取平行志愿模式录取,但是也有部分地区或者部分录取批次专仍然采取顺序志愿录取,二者录取原理是不同的,所以在报考时填写的院校专业顺序也要区别对待。
2022年浙江高考数学试卷相关文章:
★2022年高考数学必考知识点总结最新
★2022高考数学选择题答题方法
★高考数学选择题解题方法2022
★2022高考数学必考知识点考点总结大全
★2022年高考数学考前冲刺指导
★2022年河北高考时间表及注意事项
★2022年数学高考知识点
★2022高考数学必考知识点归纳最新
★2022年北京高考数学试卷
★2022年高考数学前十天如何复习最有效
2022新高考全国一卷数学试卷及答案解析
为了帮助大家全面了解2022年新高考全国一卷数学卷,以下是我整理的2022新高考全国一卷数学试卷及答案解析参考,欢迎大家借鉴与参考!
2022新高考全国一卷数学试卷
2022新高考全国一卷数学试卷答案解析参考
高考怎样填志愿
1、选择哪个学校
填报的几个志愿中要注意梯度,尤其是分数正好卡线的同学。不要一味追求名校,将所有志愿都选择同一层次的学校,更忌全部志愿扎堆名校。
2、选择什么专业
选择专业最主要的是结合自己的兴趣和基础,或者毕业后想从事的工作有特殊要求的专业,比如想当医生,就要选择相对应的专业。
3、提前了解各个学校的情况
在填报志愿之前,提前将各个学校的简章和招生计划等一系列的情况了解清楚,看自己的情况是否与该校复合,这样才能更好的去填写志愿。
服从调剂意味着什么
1、增加了一次录取机会
在平行志愿投档录取模式下,实行“排位优先,一轮投档”,每个考生只有一次被投档的机会。
如果考生所填报的专业志愿都未能被录取,选择服从专业调剂则可能被调至院校专业组内还没有录取满额的专业。而如果考生不服从专业调剂,那么一旦被退档,只能等待补录,或参加高职自招。
2、服从调剂,不一定会被调剂到其他专业
从录取的稳妥性上来说,服从专业调剂对于考生是利大于弊的。并不是说选择了专业调剂,就不会被所填报的专业录取,直接被调剂到其他专业。
如果考生的分数足够进入所填报专业时,就会被录取到所填报专业,服从专业调剂就没有派上用场。只有当考生所报专业全都录取额满,才会进入调剂程序。
3、专业调剂会调到哪里去?
专业服从调剂,是指在所填报的院校专业组内进行调剂。一般情况下,专业服从的范围是,考生当年填报的招生院校专业组,在本次招生计划录取中未满额的专业。
高考之后可以去哪玩
1、云南
云南是一个温和的城市,也是许多人向往的地方。可以在丽江感受古城魅力、在大理感受风花雪月、在香格里拉体验传说中的女儿国,一个四季如春的地方很适合放松心情。
云南香格里拉,感受真正的大自然。香格里拉的自然景色是雪山、冰川、峡谷、森林、草甸、湖泊、美丽、明朗、安然、闲逸、悠远、知足、宁静、和谐,是人们美好理想的归宿。在7月到8月间,避开如涌的人群,把自己放逐在自然,听风的呼唤,听鸟的鸣叫,听流水的声音,聆听自己的心声,这是真正的香格里拉。
2、杭州
“上有天堂,下有苏杭”,杭州是我国宜居城市之一,到西湖边上走一走,品尝东坡肉、干炸响铃、西湖醋鱼
3、重庆
说到重庆就会想到“山城”,说起来重庆也是一个神奇的城市,你以为你在以为你在地面,其实你在地下。到重庆看穿越房屋的轻轨、看斑斓的城市,还能吃上麻辣辣的火锅。
4、厦门
厦门是一个小资城市,尤其是鼓浪屿,充满文艺气息,也适合情侣度假。而且因为靠海,厦门还有非常多便宜又好吃的海鲜
5、西藏
西藏是一个神圣又神秘的地方,如果有机会,人生中一定要去一次。到布达拉宫、纳木错体验纯净的心灵,到珠穆朗玛峰挑战高峰,即使是高原反应也是值得留念的体验。
6、九寨沟
九寨沟以绝天下的原始、神秘而闻名。自然景色兼有湖泊、瀑布、雪山、森林之美,有“童话世界”的美誉。这时雪峰玉立,青山流水,交相辉映。这时的瀑布、溪流更是迷人,如飞珠撒玉,异常雄伟秀丽。其中有千年古木,奇花异草,四时变化,色彩纷呈,倒影斑斓,气象万千,是夏季消暑的理想之地。
7、桂林
“桂林山水甲天下”夸的就是桂林的漓江山水。漓江两岸风景如画,当你泛着竹排漫游漓江时,肯定会感觉自己置身于360的泼墨山水中,好山好水目不暇接。另外,桂林的阳朔可是一个魅力十足的旅游热点。在阳朔上至七八十的老人,下至七八岁的小孩都或多或少能说上几句流利的英语,要不是周围的建筑风格提醒你这是中国境内,没准你还以为自己魂游到哪个“鬼”地方了呢。西街的氛围有点像北京的三里屯,那里的酒吧融合了中西两种文化的精华,在西街呆着就算不喝酒只喝茶,也能体会什么叫享受。
2022新高考全国一卷数学试卷及答案解析相关文章:
★2022高考北京卷数学真题及答案解析
★2022高考全国乙卷试题及答案
★2022全国甲卷高考数学文科试卷及答案解析
★2022高考甲卷数学真题试卷及答案
★2022年北京高考数学试卷
★2022高考全国甲卷数学试题及答案
★2022全国新高考I卷语文试题及答案
★2022全国新高考Ⅰ卷英语试题及答案解析
★2022年全国新高考II卷数学真题及答案
★2022北京卷高考文科数学试题及答案解析
谁有09年福建省理科高考数学卷的选择题及答案。
2023新高考2卷数学难度与历史经验相比基本持平,但多选题难度较大。
2023年在高考命题将会有相应的调整。当中有一项比较重要的内容就是:为了能让新高考省份实现平稳过渡,确保这些省份的考生能够适应新高考的内容,促进高考试题的平稳,坚决不能出现偏题和怪题,也不能出现超纲内容。相关负责人还表示,未来高考命题会局限在课本的主干知识和重点知识,避免出现冷门知识或者超纲知识。
2023年高考数学难度趋势:
2022年新高考1卷的数学题目是很难的,引发了网友们的热议,也让一些高考生没能在考试中取得理想的成绩。按照教育部对于出题的要求,2023年的高考难度大概率会保持目前的趋势,难度不会大幅提升,但也不会比2022年简单太多。
1、首先,依照教育部的要求,高考数学题目可能会与现实中的复杂场景结合。这就要求考生不但具备出色的逻辑推理、计算能力,也对同学们的阅读能力、理解能力提出了很高的要求,做到举一反三是非常重要的。题目的灵活度增加,数学基础如果不够扎实可能会觉得很难,但如果应用能力强,也可能会觉得题目不难。
2、其次,对于数学的考察会更强调数学思想和方法。这就要求同学们在学习过程中掌握数学的核心,如逻辑思维能力、计算能力等。务必要吃透每一个方法,如果解题的时候总是一知半解、似懂非懂,高考的时候很可能会吃苦头。
综合以上,2023年的高考和2022年对比起来差异不会太大,可能难度稍有提升。所以同学们在最后的几个月时间里一定要回归课本,把考纲内的数学基础知识掌握牢固,提升自己举一反三的能力,不必纠结一些难题和偏题。
2010高考全国卷2数学理科选择题12题,求详解
2009年普通高等学校招生全国统一考试(福建卷)
数学(理工农医类)
一. 选择题:本小题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 函数 最小值是
A.-1 B. C. D.1
1.答案:B
[解析]∵ ∴ .故选B
2.已知全集U=R,集合 ,则 等于
A. { x ∣0 x 2} B { x ∣0<x<2}
C. { x ∣x<0或x>2} D { x ∣x 0或x 2}
2.答案:A
[解析]∵计算可得 或 ∴ .故选A
3.等差数列 的前n项和为 ,且 =6, =4, 则公差d等于
A.1 B C.- 2 D 3
3.答案:C
[解析]∵ 且 .故选C
4. 等于
A. B. 2 C. -2 D. +2
4.答案:D
[解析]∵ .故选D
5.下列函数 中,满足“对任意 , (0, ),当 < 时,都有 >
的是
A. = B. = C . = D
5.答案:A
[解析]依题意可得函数应在 上单调递减,故由选项可得A正确。
6.阅读右图所示的程序框图,运行相应的程序,输出的结果是w.w.w.k.s.5.u.c.o.m
A.2 B .4 C. 8 D .16
6.答案:C
[解析]由算法程序图可知,在n =4前均执行”否”命令,故n=2×4=8. 故选C
7.设m,n是平面 内的两条不同直线, , 是平面 内的两条相交直线,则 // 的一个充分而不必要条件是w.w.w.k.s.5.u.c.o.m
A.m // 且l // B. m // l 且n // l
C. m // 且n // D. m // 且n // l
7.答案:B
[解析]若 ,则可得 .若 则存在
8.已知某运动员每次投篮命中的概率都为40%。现采用随机模拟的方法估计该运动
员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,
指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。经随机模拟产生了20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为
A.0.35 B 0.25 C 0.20 D 0.15
8.答案:B
[解析]由随机数可估算出每次投篮命中的概率 则三次投篮命中两次为 0.25故选B
9.设a,b,c为同一平面内具有相同起点的任意三个非零向量,且满足a与b不共线,
a c ∣a∣=∣c∣,则∣b ? c∣的值一定等于w.w.w.k.s.5.u.c.o.m
A. 以a,b为两边的三角形面积 B 以b,c为两边的三角形面积
C.以a,b为邻边的平行四边形的面积 D 以b,c为邻边的平行四边形的面积
9.答案:C
[解析]依题意可得 故选C.
10.函数 的图象关于直线 对称。据此可推测,对任意的非零实数a,b,c,m,n,p,关于x的方程 的解集都不可能是
A. B C D
10. 答案:D
[解析]本题用特例法解决简洁快速,对方程 中 分别赋值求出 代入 求出检验即得.
第二卷 (非选择题共100分)
二、填空题:本大题共5小题,每小题4分,共20分。把答案填在答题卡的相应位置。
11.若 (i为虚数单位, )则 _________ w.w.w.k.s.5.u.c.o.m
11. 答案:2
解析:由 ,所以 故 。
12.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示。记分员在去掉一个最高分和一个最低分后,算的平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清。若记分员计算无误,则数字 应该是___________
12. 答案:1
解析:观察茎叶图,
可知有 。
13.过抛物线 的焦点F作倾斜角为 的直线交抛物线于A、B两点,若线段AB的长为8,则 ________________ w.w.w.k.s.5.u.c.o.m
13. 答案:2
解析:由题意可知过焦点的直线方程为 ,联立有 ,又 。
14.若曲线 存在垂直于 轴的切线,则实数 取值范围是_____________.
14. 答案:
解析:由题意可知 ,又因为存在垂直于 轴的切线,
所以 。
15.五位同学围成一圈依序循环报数,规定:
①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;
②若报出的数为3的倍数,则报该数的同学需拍手一次
已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为________.
15. 答案:5
解析:由题意可设第 次报数,第 次报数,第 次报数分别为 , , ,所以有 ,又 由此可得在报到第100个数时,甲同学拍手5次。
三解答题w.w.w.k.s.5.u.c.o.m
16.(13分)
从集合 的所有非空子集中,等可能地取出一个。
(1) 记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;
(2) 记所取出的非空子集的元素个数为 ,求 的分布列和数学期望E
16、解:(1)记”所取出的非空子集满足性质r”为事件A
基本事件总数n= =31
事件A包含的基本事件是{1,4,5}、{2,3,5}、{1,2,3,4}
事件A包含的基本事件数m=3
所以
(II)依题意, 的所有可能取值为1,2,3,4,5
又 , ,
,
故 的分布列为:
1 2 3 4 5
P
从而E +2 +3 +4 +5
17(13分)
如图,四边形ABCD是边长为1的正方形, ,
,且MD=NB=1,E为BC的中点
(1) 求异面直线NE与AM所成角的余弦值
(2) 在线段AN上是否存在点S,使得ES 平面AMN?若存在,求线段AS的长;若不存在,请说明理由w.w.w.k.s.5.u.c.o.m
17.解析:(1)在如图,以D为坐标原点,建立空间直角坐标
依题意,得 。
,
所以异面直线 与 所成角的余弦值为 .A
(2)假设在线段 上存在点 ,使得 平面 .
,
可设
又 .
由 平面 ,得 即
故 ,此时 .
经检验,当 时, 平面 .
故线段 上存在点 ,使得 平面 ,此时 .
18、(本小题满分13分)
如图,某市拟在长为8km的道路OP的一侧修建一条运动
赛道,赛道的前一部分为曲线段OSM,该曲线段为函数
y=Asin x(A>0, >0) x [0,4]的图象,且图象的最高点为
S(3,2 );赛道的后一部分为折线段MNP,为保证参赛
运动员的安全,限定 MNP=120
(I)求A , 的值和M,P两点间的距离;
(II)应如何设计,才能使折线段赛道MNP最长? w.w.w.k.s.5.u.c.o.m
18.本小题主要考查三角函数的图象与性质、解三角形等基础知识,考查运算求解能力以及应用数学知识分析和解决实际问题的能力,考查化归与转化思想、数形结合思想,
解法一
(Ⅰ)依题意,有 , ,又 , 。
当 是,
又
(Ⅱ)在△MNP中∠MNP=120°,MP=5,
设∠PMN= ,则0°< <60°
由正弦定理得
,
故
0°< <60°, 当 =30°时,折线段赛道MNP最长
亦即,将∠PMN设计为30°时,折线段道MNP最长
解法二:
(Ⅰ)同解法一
(Ⅱ)在△MNP中,∠MNP=120°,MP=5,
由余弦定理得 ∠MNP=
即
故
从而 ,即
当且仅当 时,折线段道MNP最长
注:本题第(Ⅱ)问答案及其呈现方式均不唯一,除了解法一、解法二给出的两种设计方式,还可以设计为:① ;② ;③点N在线段MP的垂直平分线上等
19、(本小题满分13分)
已知A,B 分别为曲线C: + =1(y 0,a>0)与x轴
的左、右两个交点,直线 过点B,且与 轴垂直,S为 上
异于点B的一点,连结AS交曲线C于点T.
(1)若曲线C为半圆,点T为圆弧 的三等分点,试求出点S的坐标;
(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在 ,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。w.w.w.k.s.5.u.c.o.m
19.解析
解法一:
(Ⅰ)当曲线C为半圆时, 如图,由点T为圆弧 的三等分点得∠BOT=60°或120°.
(1)当∠BOT=60°时, ∠SAE=30°.
又AB=2,故在△SAE中,有
(2)当∠BOT=120°时,同理可求得点S的坐标为 ,综上,
(Ⅱ)假设存在 ,使得O,M,S三点共线.
由于点M在以SB为直线的圆上,故 .
显然,直线AS的斜率k存在且k>0,可设直线AS的方程为 .
由
设点
故 ,从而 .
亦即
由 得
由 ,可得 即
经检验,当 时,O,M,S三点共线. 故存在 ,使得O,M,S三点共线.
解法二:
(Ⅰ)同解法一.
(Ⅱ)假设存在a,使得O,M,S三点共线.
由于点M在以SO为直径的圆上,故 .
显然,直线AS的斜率k存在且K>0,可设直线AS的方程为
由
设点 ,则有
故
由 所直线SM的方程为
O,S,M三点共线当且仅当O在直线SM上,即 .
故存在 ,使得O,M,S三点共线.
20、(本小题满分14分)
已知函数 ,且 w.w.w.k.s.5.u.c.o.m
(1) 试用含 的代数式表示b,并求 的单调区间;
(2)令 ,设函数 在 处取得极值,记点M ( , ),N( , ),P( ), ,请仔细观察曲线 在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(I)若对任意的m ( , x ),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(II)若存在点Q(n ,f(n)), x n< m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程)w.w.w.k.s.5.u.c.o.m
20.解法一:
(Ⅰ)依题意,得
由 .
从而
令
①当a>1时,
当x变化时, 与 的变化情况如下表:
x
+ - +
单调递增 单调递减 单调递增
由此得,函数 的单调增区间为 和 ,单调减区间为 。
②当 时, 此时有 恒成立,且仅在 处 ,故函数 的单调增区间为R
③当 时, 同理可得,函数 的单调增区间为 和 ,单调减区间为
综上:
当 时,函数 的单调增区间为 和 ,单调减区间为 ;
当 时,函数 的单调增区间为R;
当 时,函数 的单调增区间为 和 ,单调减区间为 .
(Ⅱ)由 得 令 得
由(1)得 增区间为 和 ,单调减区间为 ,所以函数 在处 取得极值,故M( )N( )。
观察 的图象,有如下现象:
①当m从-1(不含-1)变化到3时,线段MP的斜率与曲线 在点P处切线的斜率 之差Kmp- 的值由正连续变为负。
②线段MP与曲线是否有异于H,P的公共点与Kmp- 的m正负有着密切的关联;
③Kmp- =0对应的位置可能是临界点,故推测:满足Kmp- 的m就是所求的t最小值,下面给出证明并确定的t最小值.曲线 在点 处的切线斜率 ;
线段MP的斜率Kmp
当Kmp- =0时,解得
直线MP的方程为
令
当 时, 在 上只有一个零点 ,可判断 函数在 上单调递增,在 上单调递减,又 ,所以 在 上没有零点,即线段MP与曲线 没有异于M,P的公共点。
当 时, .
所以存在 使得
即当 MP与曲线 有异于M,P的公共点
综上,t的最小值为2.
(2)类似(1)于中的观察,可得m的取值范围为
解法二:
(1)同解法一.
(2)由 得 ,令 ,得
由(1)得的 单调增区间为 和 ,单调减区间为 ,所以函数在处取得极值。故M( ).N( )
(Ⅰ) 直线MP的方程为
由
得
线段MP与曲线 有异于M,P的公共点等价于上述方程在(-1,m)上有根,即函数
上有零点.
因为函数 为三次函数,所以 至多有三个零点,两个极值点.
又 .因此, 在 上有零点等价于 在 内恰有一个极大值点和一个极小值点,即 内有两不相等的实数根.
等价于 即
又因为 ,所以m 的取值范围为(2,3)
从而满足题设条件的r的最小值为2.
21、本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中,
(1)(本小题满分7分)选修4-4:矩阵与变换w.w.w.k.s.5.u.c.o.m
已知矩阵M 所对应的线性变换把点A(x,y)变成点A ‘(13,5),试求M的逆矩阵及点A的坐标
(2)(本小题满分7分)选修4-4:坐标系与参数方程
已知直线l:3x+4y-12=0与圆C: ( 为参数 )试判断他们的公共点个数
(3)(本小题满分7分)选修4-5:不等式选讲
解不等式∣2x-1∣<∣x∣+1
21.
(1)解:依题意得
由 得 ,故
从而由 得
故 为所求.
(2)解:圆的方程可化为 .
其圆心为 ,半径为2.
(3)解:当x<0时,原不等式可化为
又 不存在;
当 时,原不等式可化为
又
当
综上,原不等式的解集为
求数学大神帮忙,解答一道高考数学题,2014年全国卷新课标2高考文科18题。下面是题目
请画示意图
直线B1D上取一点,分别作PO1,PO2,PO3
垂直于B1D1,B1C,B1A
于O1,O2,O3
则PO1⊥面A1C1,PO2⊥面B1C
PO3⊥面A1B,
O1,O2,O3
分别作O1N⊥A1D1,O2M⊥CC1,O3Q⊥AB
,垂足分别为M,N,Q,
连PM,PN,PQ,由三垂线定理可得,PN⊥A1D1
PM⊥CC1
;PQ⊥AB,
由于正方体中各个表面、对等角全等,所以P01=PO2=PO3,∴PM=PN=PQ,即P到三条棱AB、CC1、A1D1.所在直线的距离相等所以有无穷多点满足条件,故选D.
福建省近几年高考卷 数学
这题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.
设BD与AC的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;第二问通过AP=1,AD根号3,三棱锥P-ABD体积V=根号3/4,求出AB,作AH⊥PB角PB与H。
解: (1)证明:设BD与AC的交点为O,连结EO,
∵ABCD是矩形,∴O为BD中点,这是详细答案你看下。有详细的解答过程及分析。四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD中点。(1)证明:PB∥平面AEC;(2)设AP=1,AD=根号3,三棱锥P-ABD体积V=根号3/4.求A到平面PBC距离。
你自己琢磨下答案,不明白可以继续问我哦,加油~有帮助的话希望能给你个采纳哦,祝你学习进步!
2006年高考理科数学试题最后一题及答案详解(全国卷2)
2010年福建省考试说明样卷
(理科数学)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第21(1)、(2)、(3)题为选考题,请考生根据要求选答;其它题为必考题.本卷满分150分,考试时间120分钟.
第Ⅰ卷 (选择题 共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题意要求的.
1.复数 等于
A. B. C.-1+i D.-1-i
2.已知全集U=R,集合 ,则 等于
A. B.
C. D.
3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是
A. B.
C. D.
4.下列函数 中,满足“对任意 , (0, ),当 < 时,都有 > ”的是
A. = B. =
C. = D.
5.右图是计算函数 的值的程序框图,在①、②、③处应分别填入的是
A. , , B. , ,
C. , , D. , ,
6.设 , 是平面 内的两条不同直线, , 是平面 内的两条相交直线,则 的一个充分而不必要条件是
A. 且 B. 且
C. 且 D. 且
7.已知等比数列 中, ,则其前3项的和 的取值范围是
A. B.
C. D.
8.已知 是实数,则函数 的图象不可能是
9.已知实数 满足 如果目标函数 的最小值为 ,则实数 等于
A.7 B.5 C.4 D.3
10.定义:平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合且单位长度相同)称为平面斜坐标系;在平面斜坐标系 中,若 (其中 、 分别是斜坐标系 轴、 轴正方向上的单位向量, , R, 为坐标系原点),则有序数对 称为点 的斜坐标.在平面斜坐标系 中,若 =120°,点 的斜坐标为(1,2),则以点 为圆心,1为半径的圆在斜坐标系 中的方程是
A. B.
C. D.
二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡相应位置.
11.为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点.已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是_______.
12.若 ,则a1+a2+a3+a4+a5=____.
13.由直线 ,x=2,曲线 及x轴所围图形的面积为 .
14.一人上班有甲、乙两条路可供选择,早上定时从家里出发,走甲路线有 的概率会迟到,走乙路线有 的概率会迟到;无论走哪一条路线,只要不迟到,下次就走同一条路线,否则就换另一条路线;假设他第一天走甲路线,则第三天也走甲路线的概率为 .
15.已知椭圆C1的中心在原点、焦点在x轴上,抛物线C2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:
x
0 2
3
y 2 0
据此,可推断椭圆C1的方程为 .
三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.把解答过程填写在答题卡的相应位置.
16.(本小题满分13分)
的三个内角 所对的边分别为 ,向量 =( , ), ,且 ⊥ .
(Ⅰ)求 的大小;
(Ⅱ)现给出下列四个条件:
① ;② ;③ ;④ .
试从中再选择两个条件以确定 ,求出你所确定的 的面积.
(注:只需选择一个方案答题,如果用多种方案答题,则按第一种方案给分)
17.(本小题满分13分)甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加某数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;
(Ⅲ)若将频率视为概率,对甲同学在今后的3次数学竞赛考试进行预测,记这3次成绩中高于80分的次数为 ,求 的分布列及数学期望E .
18.(本小题满分13分)四棱锥P-ABCD的底面与四个侧面的形状和大小如图所示.
(Ⅰ)写出四棱锥P-ABCD中四对线面垂直关系(不要求证明);
(Ⅱ)在四棱锥P-ABCD中,若 为 的中点,求证: ‖平面PCD;
(Ⅲ)在四棱锥P-ABCD中,设面PAB与面PCD所成的角为 ,求 值.
19.(本小题满分13分) 以F1(0,-1),F2(0,1)为焦点的椭圆C过点P( ,1).
(Ⅰ)求椭圆C的方程; (Ⅱ)略.
20.(本小题满分14分)已知函数 .
(Ⅰ)求函数 的极值;(Ⅱ)略.
21.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)(本小题满分7分)选修4-2:矩阵与变换(略).
(2)(本小题满分7分)选修4一4:坐标系与参数方程
在极坐标系中,设圆 上的点到直线 的距离为 ,求 的最大值.
(3)(本小题满分7分) 选修4—5:不等式选讲
已知 的最小值.
样卷参考答案
一、选择题:本题考查基础知识和基本运算,每小题5分,满分50分.
1.D 2.A 3.D 4.A 5.B 6.B 7.D 8.D 9.B 10.A
二、填空题:本题考查基础知识和基本运算,每小题4分,满分20分.
11.9. 12.31. 13.2 . 14. .15. .
三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.
16.解:(I)∵ ⊥ ,∴-cosBcosC+sinBsinC- =0,
即cosBcosC-sinBsinC=- ,∴cos(B+C)=- .∵A+B+C=180°,∴cos(B+C)=-cosA,
∴cosA= ,A=30°.
(Ⅱ)方案一:选择①③,可确定△ABC.∵A=30°,a=1,2c-( +1)b=0.
由余弦定理 ,整理得 =2,b= ,c= .
∴ .
方案二:选择①④,可确定△ABC.∵A=30°,a=1,B=45°,∴C=105°.
又sin105°=sin(60°+45°)=sin60°cos45°+cos60°sin45°= .
由正弦定理得c= .∴ .
(注:若选择②③,可转化为选择①③解决;若选择②④,可转化为选择①④解决,此略.选择①②或选择③④不能确定三角形)
17. 解:(I)作出茎叶图如下:
(Ⅱ)派甲参赛比较合适,理由如下:
,
,
甲的成绩较稳定,派甲参赛比较合适.
注:本小题的结论及理由均不唯一,如果考生能从统计学的角度分析,给出其他合理回答,同样给分,如派乙参赛比较合适,理由如下:从统计的角度看,甲获得85以上(含85分)的概率 ,乙获得85分以上(含85分)的概率 . , 派乙参赛比较合适.
(Ⅲ)记“甲同学在一次数学竞赛中成绩高于80分”为事件A, 则 .
随机变量 的可能取值为0,1,2,3,且 服从 ,
所以变量 的分布列为 .
.(或 )
18.解法一:
(Ⅰ)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,
AD⊥平面PAB,BC⊥平面PAB,AB⊥平面PAD.
(Ⅱ)依题意AB,AD,AP两两垂直,分别以直线AB,AD,AP为x,y,z轴,
建立空间直角坐标系,如图.则 , , , .
∵E是PA中点,∴点E的坐标为 ,
, , .
设 是平面PCD的法向量.由 ,即
取 ,得 为平面PCD的一个法向量.
∵ ,∴ ,
∴ ‖平面PCD.又BE 平面PCD,∴BE‖平面PCD.
(Ⅲ)由(Ⅱ),平面PCD的一个法向量为 ,
又∵AD⊥平面PAB,∴平面PAB的一个法向量为 ,
∴ .
19.解: (Ⅰ)设椭圆方程为 (a>b>0),由已知c=1,
又2a= ,所以a= ,b2=a2-c2=1,椭圆C的方程是x2+ =1.
20.解:(Ⅰ) .
当 , ,函数 在 内是增函数,∴函数 没有极值.
当 时,令 ,得 .
当 变化时, 与 变化情况如下表:
+ 0 -
单调递增 极大值 单调递减
∴当 时, 取得极大值 .
综上,当 时, 没有极值;
当 时, 的极大值为 ,没有极小值.
21. (2)解:将极坐标方程 转化为普通方程:
可化为
在 上任取一点A ,则点A到直线的距离为
,它的最大值为4
跪求2004~2009年高考全国二卷数学,语文,英语,理综的试题及答案
我兴奋的找出我06年留下的高考答案,结果发现数学是全国1的,晕啦!!
第一问很容易,随便算了一下A1=1/2,A2=1/6;
第二个问常规思路:
把(Sn-1)带入方程,得Sn的平方-(2+An)Sn+1=0;求出Sn(用An来表示)
然后用Sn-S(n-1)=(相减的结果)=An,应该能求出An
数学归纳法:
由A1,A2猜想An=1/n(n+1)
假设 n=1,k,k+1 自己慢慢算吧,这题其实不难,现在高考数学的最后一天往往不是最难得了,所以在高考的时候千万不要看都不看最后一题。
呵呵,楼上的是全国一卷的,而且只有数学卷,我帮楼主找找吧,但是现在网速慢,打不开网页,破电信!!!
等晚上我找到了整理好发给楼主啊,收到了请采纳哦...
PS:本是二楼的哈,楼主,现在我已经发给你了,来自7544.......全国二卷语数外理综.
做人要厚道,满意请采纳!!!!!!!!!!
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。