1.如何评价2017高考数学江苏卷

2.2017年全国一卷数学高考题,如图,答案最后为什么写m>负一?

3.2017年高考数学必考等差数列公式

2017年高考数学解析_2017全国高考数学解析

2017年江苏高考数学没有26题,一共只有23题。

如今的高考,考的并不是谁的逻辑思维强,也不是谁的基础知识强;而是在考谁能最快、最准做出题来,得更多的分,可见掌握应试教育的技巧是多么的重要。在应试教育中,只有多记公式,掌握解题技巧,熟悉各种题型,把自己变成一个做题机器,才能在考试中取得最好的成绩。

在高考中只会做题是不行的,一定要在会的基础上加个“熟练”才行,小题一般要控制在每个两分钟左右。在数学里常量与变量是一对矛盾,变量反映的是一个过程,而常量就是变量在某一时刻的值.研究问题时,变量有时“受制”,常量有时“不常”,即使是“常值”,

也可能需要讨论其取不同值的情况下,所引起的不同变化,如我们熟悉的指数函数与对数函数的底数.不要把常量看死,而把它看作变量,放在一个过程中研究,往往会得到巧妙的方法。

如何评价2017高考数学江苏卷

f'(x)=2ax+(2-a)-1/x

=(2ax^2+(2-a)x-1)/x

=(2x-1)(ax+1)/x

a>1

令f'(x)>=0

x<=-1/a或x>=1/2

定义域是x>0

∴x>=1/2

增区间是[1/2,+∞),减区间是(0,1/2]

当1/a>=1/2时

f(x)在区间[1/a,1]内的最大值

=f(1)

=a+2-a-0

=2不是ln3

∴1/a<1/2

a>2

f(x)在区间[1/a,1]内的最大值

=f(1/a)

=a*1/a^2+(2-a)/a-ln(1/a)

=1/a+2/a-1+lna

=3/a-1+lna

=ln3

∴a=3符合a>2

综上a=3

如果您认可我的回答,请点击“为满意答案”,祝学习进步!

2017年全国一卷数学高考题,如图,答案最后为什么写m>负一?

2017年江苏高考数学试卷,在保持稳定的基础上,进行适度的改革和创新,对数据处理能力、应用意识的要求比以往有所提高。2017年江苏数学试卷在“稳中求进”中具体知识点有变化。

1.体现新课标理念,实现平稳过渡。试卷紧扣江苏考试大纲,新增内容的考查主要是对基本概念、基本公式、基本运算的考查,难度不大。对传统内容的考查在保持平稳的基础上进行了适度创新。如第7题首次考查几何概型概率问题。

2.关注通性通法。试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求。 如第17题解析几何考查两直线交点以及点在曲线上。第20题以极值为载体考查根与系数关系、三次方程因式分解。第19题以新定义形式多层次考查等差数列定义。

3.体现数学应用,关注社会生活。第10题以实际生活中运费、存储费用为背景的基本不等式求最值问题,第18题以常见的正四棱柱和正四棱台为背景的解三角形问题,体现试卷设计问题背景的公平性,对推动数学教学中关注身边的数学起到良好的导向。

4.附加题部分,前四道选做题对知识点的考查单一,方法清晰,学生入手较易。两道必做题一改常规,既考查空间向量在立体几何中应用,又考查概率分布与期望值,既考查运算能力,又考查思维能力。

2017年高考数学必考等差数列公式

由前面推导可知,即由题设可知根的判别式=16(4K^2-m^2+1)>0,后面又求得k=-(m+1)/2

这样将k代入进去,4K^2-m^2+1>0

4ⅹ[-(m+1)/2]^2-m^2+1>0

化简得2m+2>0得m>-1

所以当且仅当m>-1时,根的判别式﹥0就是这样得来的。

 等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。以下是我为您整理的关于2017年高考数学必考等差数列公式的相关资料,希望对您有所帮助。

 高中数学知识点:等差数列公式

 等差数列公式an=a1+(n-1)d

 a1为首项,an为第n项的通项公式,d为公差

 前n项和公式为:Sn=na1+n(n-1)d/2

 Sn=(a1+an)n/2

 若m+n=p+q则:存在am+an=ap+aq

 若m+n=2p则:am+an=2ap

 以上n.m.p.q均为正整数

 解析:第n项的值an=首项+(项数-1)?公差

 前n项的和Sn=首项?n+项数(项数-1)公差/2

 公差d=(an-a1)?(n-1)

 项数=(末项-首项)?公差+1

 数列为奇数项时,前n项的和=中间项?项数

 数列为偶数项,求首尾项相加,用它的和除以2

 等差中项公式2an+1=an+an+2其中{an}是等差数列

 通项公式:公差?项数+首项-公差

 高中数学知识点:等差数列求和公式

 若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:

 S=(a1+an)n?2

 即(首项+末项)?项数?2

 前n项和公式

 注意:n是正整数(相当于n个等差中项之和)

 等差数列前N项求和,实际就是梯形公式的妙用:

 上底为:a1首项,下底为a1+(n-1)d,高为n。

 即[a1+a1+(n-1)d]* n/2={a1n+n(n-1)d}/2。

 高中数学知识点:推理过程

 设首项为 , 末项为 , 项数为 , 公差为 , 前 项和为 , 则有:

 当d?0时,Sn是n的二次函数,(n,Sn)是二次函数 的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。

 注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。

 求和推导

 证明:由题意得:

 Sn=a1+a2+a3+。。。+an①

 Sn=an+a(n-1)+a(n-2)+。。。+a1②

 ①+②得:

 2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](当n为偶数时)

 Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2

 Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即(A1+An)

 基本公式

 公式 Sn=(a1+an)n/2

 等差数列求和公式

 Sn=na1+n(n-1)d/2; (d为公差)

 Sn=An2+Bn; A=d/2,B=a1-(d/2)

 和为 Sn

 首项 a1

 末项 an

 公差d

 项数n

 表示方法

 等差数列基本公式:

 末项=首项+(项数-1)?公差

 项数=(末项-首项)?公差+1

 首项=末项-(项数-1)?公差

 和=(首项+末项)?项数?2

 差:首项+项数?(项数-1)?公差?2

 说明

 末项:最后一位数

 首项:第一位数

 项数:一共有几位数

 和:求一共数的总和

 本段通项公式

 首项=2?和?项数-末项

 末项=2?和?项数-首项

 末项=首项+(项数-1)?公差:a1+(n-1)d

 项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1

 公差= d=(an-a1)/n-1

 如:1+3+5+7+?99 公差就是3-1

 将a1推广到am,则为:

 d=(an-am)/n-m

 基本性质

 若 m、n、p、q?N

 ①若m+n=p+q,则am+an=ap+aq

 ②若m+n=2q,则am+an=2aq(等差中项)