高考数学卷答案解析,高考数学卷2答案
1.北京卷高考数学试卷及答案解析2022年
2.求2008年江苏高考数学试卷(带答案的)
3.2022年新高考二卷数学难吗
4.跪求2004~2009年高考全国二卷数学,语文,英语,理综的试题及答案
5.求高中数学老师解答
2011年高考题全国卷II数学试题·理科全解全析
科目: 数学 试卷名称 2011年普通高等学校招生全国统一考试·全国卷II(理科)
知识点检索号
新课标
题目及解析
(1)复数 , 为 的共轭复数,则
(A) (B) (C) (D)
思路点拨先求出的 共轭复数,然后利用复数的运算法则计算即可。
精讲精析选B. .
(2)函数 的反函数为
(A) (B)
(C) (D)
思路点拨先反解用y表示x,注意要求出y的取值范围,它是反函数的定义域。
精讲精析选B.在函数 中, 且反解x得 ,所以 的反函数为 .
(3)下面四个条件中,使 成立的充分而不必要的条件是
(A) (B) (C) (D)
思路点拨本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b,而由a>b推不出选项的选项.
精讲精析选A.即寻找命题P使P 推不出P,逐项验证可选A。
(4)设 为等差数列 的前 项和,若 ,公差 , ,则
(A)8 (B)7 (C)6 (D)5
思路点拨思路一:直接利用前n项和公式建立关于k的方程解之即可。思路二:
利用 直接利用通项公式即可求解,运算稍简。
精讲精析选D.
(5)设函数 ,将 的图像向右平移 个单位长度后,所得的图像与原图像重合,则 的最小值等于
(A) (B) (C) (D)
思路点拨此题理解好三角函数周期的概念至关重要,将 的图像向右平移 个单位长度后,所得的图像与原图像重合,说明了 是此函数周期的整数倍。
精讲精析选C. 由题 ,解得 ,令 ,即得 .
(6)已知直二面角 ,点 ,C为垂足, 为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于
(A) (B) (C) (D) 1
思路点拨本题关键是找出或做出点D到平面ABC的距离DE,根据面面垂直的性质不难证明 平面 ,进而 平面ABC,所以过D作 于E,则DE就是要求的距离。
精讲精析选C.
如图,作 于E,由 为直二面角, 得 平面 ,进而 ,又 ,于是 平面ABC,故DE为D到平面ABC的距离。
在 中,利用等面积法得 .
(7)某同学 有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有
(A)4种 (B)10种 (C)18种 (D)20种
思路点拨本题要注意画册相同,集邮册相同,这是重复元素,不能简单按照排列知识来铸。所以要分类进行求解。
精讲精析选B.分两类:取出的1本画册,3本集邮册,此时赠送方法有 种;取出的2本画册,2本集邮册,此时赠送方法有 种。总的赠送方法有10种。
(8)曲线y= +1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为
(A) (B) (C) (D)1
思路点拨利用导数求出点(0,2)切线方程然后分别求出与直线y=0与y=x的交点问题即可解决。
精讲精析选A. 切线方程是: ,在直角坐标系中作出示意图,即得 。
(9)设 是周期为2的奇函数,当0 ≤x≤1时, = ,则 =
(A) - (B) (C) (D)
思路点拨解本题的关键是把通过周期性和奇偶性把自变量 转化到区间[0,1]上进行求值。
精讲精析选A.
先利用周期性,再利用奇偶性得: .
(10)已知抛物线C: 的焦点为F,直线 与C交于A,B两点 .则 =
(A) (B) (C) (D)
思路点拨方程联立求出A、B两点后转化为解三角形问题。
精讲精析选D.
联立 ,消y得 ,解得 .
不妨设A在x轴上方,于是A,B的坐标分别为(4,4),(1,-2),
可求 ,利用余弦定理 .
(11)已知平面α截一球面 得圆M,过圆心M且与α成 二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4 ,则圆N的面积为
(A)7 (B)9 (C)11 (D)13
思路点拨做出如图所示的图示,问题即可解决。
精讲精析选B.
作示意图如,由圆M的面积为4 ,易得 ,
中, 。
故 .
(12)设向量 满足 ,则 的最大值等于
(A)2 (B) (c) (D)1
思路点拨本题按照题目要求构造出如右图所示的几何图形,然后分析观察不难得到当线段AC为直径时, 最大.
精讲精析选A.如图,构造
所以A、B、C、D四点共圆,分析可知当线段AC为直径时, 最大,最大值为2.
(13)(1- )20的二项展开式中,x的系数与x9的系数之差为: .
思路点拨解本题一个掌握展开式的通项公式,另一个要注意 .
精讲精析0. 由 得 的系数为 , x9的系数为 ,而 .
(14)已知a∈( , ),sinα= ,则tan2α=
思路点拨本题涉及到同角三角函数关系式,先由正弦值求出余弦值一定要注意角的范围,再求出正切值,最后利用正切函数的倍角公式即可求解。
精讲精析 .由a∈( , ),sinα= 得 ,
.
(15)已知F1、F2分别为双曲线C: - =1的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线.则|A F2| = .
思路点拨本题用内角平分线定理及双曲线的定义即可求解。
精讲精析6.
由角平分线定理得: ,故 .
(16)己知点E、F分别在正方体ABCD-A1B2C3D4的棱BB 1 、CC1上,且B1E=2EB, CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于 .
思路点拨本题应先找出两平面的交线,进而找出或做出二面角的平面角是解决此问题的关键,延长EF必与BC相交,交点为P,则AP为面AEF与面ABC的交线.
精讲精析 .延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为 ,所以 为面AEF与面ABC所成的二面角的平面角。
(17)(本小题满分l0分)(注意:在试题卷上作答无效)
△ABC的内角A、B、C的对边分别为a、b、c.己知A—C=90°,a+c= b,求C.
思路点拨解决本题的突破口是利用正弦定理把边的关系转化为角的正弦的关系,然后再结合A—C=90°,得到 .即可求解。
精讲精析选D.由 ,得A为钝角且 ,
利用正弦定理, 可变形为 ,
即有 ,
又A、B、C是 的内角,故
或 (舍去)
所以 。
所以 .
(18)(本小题满分12分)(注意:在试题卷上作答无效)
根据以往统计资料,某地车主购买甲种 保险 的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立
(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;
(Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。求X的期望。 思路点拨解本题应首先主出该车主购买乙种保险的概率为p,利用乙种保险但不购买甲种保险的概率为0.3,即可求出p=0.6.然后(ii)利用相互独立事件的概率计算公式和期望公式计算即可.
精讲精析设该车主购买乙种保险的概率为p,由题意知: ,解得 。
(I) 设所求概率为P1,则 .
故该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8。
(II) 对每位车主甲、乙两种保险都不购买的概率为 。
所以X的期望是20人。
(19)如图,四棱锥 中, , ,侧面 为等边三角形, .
(Ⅰ)证明: ;
(Ⅱ)求 与平面 所成角的大小.
思路点拨本题第(I)问可以直接证明,也可建系证明。
(II)建立空间直角坐标系,利用空间向量的坐标运算计算把求角的问题转化为数值计算问题,思路清晰思维量小。
精讲精析计算SD=1, ,于是 ,利用勾股定理,可知 ,同理,可证
又 ,
因此, .
(II)过D做 ,如图建立空间直角坐标系D-xyz,
A(2,-1,0),B(2,1,0),C(0,1,0),
可计算平面SBC的一个法向量是
.
所以AB与平面SBC所成角为 .
(20)设数列 满足 且
(Ⅰ)求 的通项公式;
(Ⅱ)设
思路点拨解本题突破口关键是由式子 得到 是等差数列,进而可求出数列 的通项公式.(II)问求出 的通项公式注意观察到能采用裂项相消的方式求和。
精讲精析 (I) 是公差为1的等差数列,
所以
(II)
.
(21)已知O为坐标原点,F为椭圆 在y轴正半轴上的焦点,过F且斜率为 的直线 与C交与A、B两点,点P满足
(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.
思路点拨方程联立利用韦达定理是解决这类问题的基本思路,注意把 用坐标表示后求出P点的坐标,然后再结合直线方程把P点的纵坐标也用A、B两点的横坐标表示出来。从而求出点P的坐标代入椭圆方程验证即可证明点P在C上。(II)此问题证明有两种思路:思路一:关键是证明 互补.通过证明这两个角的正切值互补即可,再求正切值时要注意利用倒角公式。
思路二:根据圆的几何性质圆心一定在弦的垂直平分线上,所以根据两条弦的垂直平分线的交点找出圆心N,然后证明N到四个点A、B、P、Q的距离相等即可.
精讲精析 (I)设
直线 ,与 联立得
由 得
,
所以点P在C上。
(II)法一:
同理
所以 互补,
因此A、P、B、Q四点在同一圆上。
法二:由 和题设知, ,PQ的垂直平分线 的方程为 …①
设AB的中点为M,则 ,AB的垂直平分线 的方程为 …②
由①②得 、 的交点为
,
, ,
故 .
所以A、P、B、Q四点在同一圆圆N上.
(22)(本小题满分12分)(注意:在试题卷上作答无效)
(Ⅰ)设函数 ,证明:当 时, ;
(Ⅱ)从编号1到100的100张卡片中每次随即抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为 .证明:
思路点拨本题第(I)问是利用导数研究单调性最值的常规题,不难证明。
第(II)问证明如何利用第(I)问结论是解决这个问题的关键也是解题能力高低的体现。
精讲精析(I)
所以 在 上单增。
当 时, 。
(II)
由(I),当x<0时, ,即有
故
于是 ,即 .
利用推广的均值不等式:
另解: ,
所以 是上凸函数,于是
因此
故
综上:
北京卷高考数学试卷及答案解析2022年
对于命题p1,可以对函数求导:y' = ln2×(2^x +(1/2)^x) >0 ,所以函数在R上单增,命题正确。
对于命题p2,求导:y' = ln2×(2^x -(1/2)^x) ,函数在R上单调性不确定,即有增有减,命题错误。
这样结果就很明显了,选C 。
求2008年江苏高考数学试卷(带答案的)
多年来北京卷会在最后一题做大胆的创新。具体来说,北京卷的最后一题并不执着于具体的知识或 方法 ,而是通过全新的背景,考查一般意义下的数学素养。下面是我为大家收集的关于北京卷高考数学试卷及答案解析2022年。希望可以帮助大家。
北京卷高考数学试卷
北京卷高考数学答案解析
高中数学知识汇总
必修一:1、集合与函数的概念 (这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2
选修1--1:重点:高考占30分
1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)
选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)
理科:选修2—1、2—2、2—3
选修2--1:1、逻辑用语 2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)
选修2--2:1、导数与微积分2、推理证明:一般不考3、复数
选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:
高考的知识板块
集合与简单逻辑:5分或不考
函数:高考60分:①、指数函数 ②对数函数 ③二次函数 ④三次函数 ⑤三角函数 ⑥抽象函数(无函数表达式,不易理解,难点)
平面向量与解三角形
立体几何:22分左右
不等式:(线性规则)5分必考
数列:17分 (一道大题+一道选择或填空)易和函数结合命题
平面解析几何:(30分左右)
计算原理:10分左右
概率统计:12分----17分
复数:5分
推理证明
一般高考大题分布
1、17题:三角函数
2、18、19、20 三题:立体几何 、概率 、数列
3、21、22 题:函数、圆锥曲线
成绩不理想一般是以下几种情况:
做题不细心,(会做,做不对)
基础知识没有掌握
解决问题不全面,知识的运用没有系统化(如:一道题综合了多个知识点)
心理素质不好
总之学__数学一定要掌握科学的学__方法:1、笔记:记老师讲的课本上没有的知识点,尤其是数列性质,课本上没有,但做题经常用到 2、错题收集、归纳 总结
北京卷高考数学试卷及答案解析2022年相关 文章 :
★ 2022全国甲卷高考数学文科试卷及答案解析
★ 2022年全国新高考II卷数学真题及答案
★ 2022高考全国乙卷试题及答案(理科)
★ 2022年新高考Ⅱ卷数学真题试卷及答案
★ 2022年新高考Ⅱ卷数学试题及答案解析
★ 2022年新高考Ⅰ卷数学真题试卷及答案
★ 2022高考甲卷数学真题试卷及答案
★ 2022高考全国甲卷文综试题及答案一览
★ 2022高考全国甲卷数学试题及答案
★ 全国新高考II卷2022英语试题及答案解析
2022年新高考二卷数学难吗
高中数学合集百度网盘下载
链接:提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
跪求2004~2009年高考全国二卷数学,语文,英语,理综的试题及答案
2022年新高考二卷数学难。
数学高考全国二卷考的题创新性相对较高,试卷整体难度偏大。与去年相比,这次高考数学试题难度有非常明显的提升。整体考察重基础,但创新较多。对学生的计算能力要求较高。虽然考察内容注重基础,但也很注重学生能力的培养,注重数学的实际应用。
新高考二卷数学的考查:
1、试卷在题型的考查
试卷在选择题、填空题、解答题三种题型都加强了对主干知识的考查。如全国甲卷理科第19题,以学校体育比赛为情境,考查概率的基础知识和求离散型随机变量的分布列与期望的方法,实现了对主干知识的深入考查。
2、试卷突出对学科的考查
试卷突出对学科基本概念、基本原理的考查,强调知识之间的内在联系,引导学生形成学科知识系统;注重本原性方法,淡化特殊技巧,强调通性通法的深入理解和综合运用,促进学生将知识和方法内化为自身的知识结构。
高考二卷数学答题技巧:
1、养成良好的考试习惯
拿到试卷,首先填写好姓名和考号,快速浏览试卷,把握全卷的难易,高中英语,把容易的题的题号写在草稿纸的最顶端,再做题,遇到卡壳,马上跳过去做容易的题。这样保证最大限度发挥实力,也解决了由于过度紧张导致的暂时遗忘影响考试发挥的问题。
2、把握好审题关
很多学生练习了很多题,题与题之间有些相似,但又有区别,做题一不小心就会习惯性主观附加已知条件,导致最终出错。要求“字字看清,句句读懂,理解题意”,审两遍题,明确已知条件和隐含的已知条件。
3、深刻理解“长题不难,难题不后”
一般高考试卷中总会出现题干很长,语句环绕的试题。乍一看很难理解,摸不清意图。但往往多读几遍,把其中关系弄清,做起来就比较简单。做长题的关键是审题。“难题不后”,主要是说最后一题一般不是最难的,所以要学会总体把握全卷,先做简单的后做难的。
求高中数学老师解答
呵呵,楼上的是全国一卷的,而且只有数学卷,我帮楼主找找吧,但是现在网速慢,打不开网页,破电信!!!
等晚上我找到了整理好发给楼主啊,收到了请采纳哦...
PS:本是二楼的哈,楼主,现在我已经发给你了,来自7544.......全国二卷语数外理综.
做人要厚道,满意请采纳!!!!!!!!!!
高中数学合集百度网盘下载
链接:提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。