数列高考题汇编及答案-数列高考题及答案
1.数学数列高考题!!要答案讲解
2.急!一道数列高考题。
数学数列高考题!!要答案讲解
am+n=am+an或者am+n=am+an+1
a2=0,而且a2=a1+a1或者a2=a1+a1+1
因为an每一项都为非负实数,那么a1=a2=0
a3>0,a3=a2+a1+1=1
a4=a3+a1=a2+a2=1(楼主应该能推出这个吧)
a100=a10+a90(+1),a90=a10+a80(+1)
最后一定能化得
a100=10*a10+n(n>0,能理解吧?)
因为这个an每一项都是整数(因为前几项就只有整数了嘛)
所以这个a10=1,2或者3
明显a10不能等于1
因为a10=a1+a9(+1)=a1+a2+a7(+2)=a1+a2+a3+a4(+3)
如没有+3,a10都至少等于a3+a4=2
然后a10=a6+a4(+1)=a3+a3+a4(+2)
同样道理,a10也不会等于2
那么a10=3
急!一道数列高考题。
A1^3+A2^3+A3^3+.......+An^3=Sn^2
A1^3+A2^3+A3^3+.......+A(n+1)^3=S(n+1)^2
两式相减,得
A(n+1)^3=(S(n+1)-Sn)(S(n+1)+Sn)
=A(n+1)(2S(n+1)-A(n+1))
所以
A(n+1)^2+A(n+1)=2S(n+1)
An^2+An=2Sn
两式相减,得
A(n+1)*(A(n+1)-1)=(An+1)*An
(A(n+1)+An)(A(n+1)-An-1)=0
因为An为正,所以有A(n+1)+An>0
A(n+1)=An+1
{An}为等差数列,公差为1
又A1^3=S1^2=A1^2
所以A1=1
所以得An通项为An=n
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。