1.解析几何与立体几何有区别么?分别指的什么。包括哪些内容?相对高考来说应该怎样复习?

2.解析几何,求解

3.关于高考几何体用的到的定理帮忙整理一下.比如三角形的垂心定理,重心定理等,还有其他图形的。 在线等、

4.湖南高考数学知识点总结

高考几何概念,高考几何概型题

 高中数学立体几何一直是数学的一大难点。因为它要求学生有立体感,在一个平面内把几何图形的立体感想象出来。怎样才能学好立体几何呢?下面我为你整理了高中数学立体几何学习方法,希望对你有帮助。

高中数学立体几何学习方法

 第一要建立空间观念,提高空间想象力。

 从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。此外,多用图表示概念和定理,多在头脑中?证明?定理和构造定理的?图?,对于建立空间观念也是很有帮助的。

 2. 2

 第二要掌握基础知识和基本技能。

 要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。这是因为《立体几何》内容前后联系紧密,前面内容是后面内容的根据,后面内容既巩固了前面的内容,又发展和推广了前面内容。在解题中,要书写规范,如用平行四边形ABCD表示平面时,可以写成平面AC,但不可以把平面两字省略掉;要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观;对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交待清楚,自己心中有数而不把它写出来是不行的。要学会用图(画图、分解图、变换图)帮助解决问题;要掌握求各种角、距离的基本方法和推理证明的基本方法分析法、综合法、反证法。

 3. 3

 第三要不断提高各方面能力。

 通过联系实际、观察模型或类比平面几何的结论来提出命题;对于提出的命题,不要轻易肯定或否定它,要多用几个特例进行检验,最好做到否定举出反面例子,肯定给出证明。欧拉公式的内容是以研究性课题的形式给出的,要从中体验创造数学知识。要不断地将所学的内容结构化、系统化。所谓结构化,是指从整体到局部、从高层到低层来认识、组织所学知识,并领会其中隐含的思想、方法。所谓系统化,是指将同类问题如平行的问题、垂直的问题、角的问题、距离的问题、惟一性的问题集中起来,比较它们的异同,形成对它们的整体认识。牢固地把握一些能统摄全局、组织整体的概念,用这些概念统摄早先偶尔接触过的或是未察觉出明显关系的已知知识间的联系,提高整体观念。

学好立体几何方法

 一、逐渐提高逻辑论证能力

 立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(?推出法?)形式写出。

 二、立足课本,夯实基础

 学习立体几何的一个捷径就是认真学习课本中定理的证明,尤其是一些很关键的定理的证明。定理的内容都很简单,就是线与线,线与面,面与面之间的联系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。

 三、培养空间想象力

 为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。

 例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。

 其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。

 最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的?立体?图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。

 四、?转化?思想的应用

 我个人觉得,解立体几何的问题,主要是充分运用?转化?这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

 (1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。

 (2)异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

 (3)面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

 五、建立数学模型

解析几何与立体几何有区别么?分别指的什么。包括哪些内容?相对高考来说应该怎样复习?

平行:在同一平面内,不相交的两条直线相互平行。

垂线、互相垂直:垂线是两条直线的两个特殊位置关系,:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。

从直线上截下的有限的一段,叫做线段,线段通常用两个端点来表示,如线段AB.线段 从一个定点出发沿一定方向运动,所形成的轨就是射线,射线 从一点引出两条射线所组成的图形,叫做角,这个点叫做角的顶点,每条射线叫做角的边角 角的两边成一条直线,这样的角叫做平角,一个个平角是180度平角 成90度的角叫做直角.直角

小于90度的叫做锐角. 锐角 大于90度而小于180度的角叫做钝钝角.钝角 一条蛇线围绕端点旋转一周所成的角叫做周角.一个周角是360度.周角 用来表示角的大小的量.角度 两条直线相交成直角,那么这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.垂线

在同一平面内不相交的两条直线,叫做平行线.平行线 连接两点线段的长,叫做两点间的距离.两点间的距离 从直线外一点到这条直线的垂直线段的长.点到直线的距离 两条平行线中一条直线上任意一点到另一条直线的距离平行线间的距离 由三线段围成的闭图形,叫做三角形三角形

三个内角都是锐角的三角形. 锐角三角形 有一个内角是直角的三角形.夹直角的两条边叫做直角边,直角所对的边叫做斜边直角三角形 有一个内角是钝角的三角形,钝角三角形 有两条边相等的三角形,叫做等腰三角形,相等的两条边叫腰,另一条边叫做底,两腰的夹角叫做顶点,,底边上的两个角叫做底角等腰三角形 两条直角边相等的直角三角形,叫等腰直角三角形.等腰直角三角形

查看全部3个回答

上海 高考数学专题复习,为什么别的孩子成绩一直好?

值得一看的高考数学相关信息推荐

提炼高分考生学习方法_高考数学专题复习_结合试卷错题,总结考点难点,下次考试成绩就能提升!现在报名,200元试听课免费送!

上海掌小门教育科技..广告

相关问题全部

什么是互相平行和互相垂直?

平行:在同一平面内,不相交的两条直线相互平行。 垂线、互相垂直:垂线是两条直线的两个特殊位置关系,:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。

27 浏览1467 2016-06-04

什么是互相平行和互相垂直?(图)

平行:在同一平面内,不相交的两条直线相互平行。 垂线、互相垂直:垂线是两条直线的两个特殊位置关系,:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。 从直线上截下的有限的一段,叫做线段,线段通常用两个端点来表示,如线段AB.线段 从一个定点出发沿一定方向运动,所形成的轨就是射线,射线 从一点引出两条射线所组成的图形,叫做角,这个点叫做角的顶点,每条射线叫做角的边角 角的两边成一条直线,这样的角叫做平角,一个个平角是180度平角 成90度的角叫做直角.直角 小于90度的叫做锐角. 锐角 大于90度而小于180度的角叫做钝钝角.钝角 一条蛇线围绕端点旋转一周所成的角叫做周角.一个周角是360度.周角 用来表示角的大小的量.角度 两条直线相交成直角,那么这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.垂线 在同一平面内不相交的两条直线,叫做平行线.平行线 连接两点线段的长,叫做两点间的距离.两点间的距离 从直线外一点到这条直线的垂直线段的长.点到直线的距离 两条平行线中一条直线上任意一点到另一条直线的距离平行线间的距离 由三线段围成的闭图形,叫做三角形三角形 三个内角都是锐角的三角形. 锐角三角形 有一个内角是直角的三角形.夹直角的两条边叫做直角边,直角所对的边叫做斜边直角三角形 有一个内角是钝角的三角形,钝角三角形 有两条边相等的三角形,叫做等腰三角形,相等的两条边叫腰,另一条边叫做底,两腰的夹角叫做顶点,,底边上的两个角叫做底角等腰三角形 两条直角边相等的直角三角形,叫等腰直角三角形.等腰直角三角形

17 浏览1454 2018-04-16

什么是互相平行和互相垂直

相互垂直:两条直线相交成的直角,就说这两条直线相互垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。? 相互平行:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线相互平行。

1 浏览166 2019-11-11

什么叫互相垂直,互相平行?

从直线上截下的有限的一段,叫做线段,线段通常用两个端点来表示,如线段AB.线段 从一个定点出发沿一定方向运动,所形成的轨就是射线,射线 从一点引出两条射线所组成的图形,叫做角,这个点叫做角的顶点,每条射线叫做角的边角 角的两边成一条直线,这样的角叫做平角,一个个平角是180度平角 成90度的角叫做直角.直角 小于90度的叫做锐角. 锐角 大于90度而小于180度的角叫做钝钝角.钝角 一条蛇线围绕端点旋转一周所成的角叫做周角.一个周角是360度.周角 用来表示角的大小的量.角度 两条直线相交成直角,那么这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.垂线 在同一平面内不相交的两条直线,叫做平行线.平行线 连接两点线段的长,叫做两点间的距离.两点间的距离 从直线外一点到这条直线的垂直线段的长.点到直线的距离 两条平行线中一条直线上任意一点到另一条直线的距离平行线间的距离 由三线段围成的闭图形,叫做三角形三角形 三个内角都是锐角的三角形. 锐角三角形 有一个内角是直角的三角形.夹直角的两条边叫做直角边,直角所对的边叫做斜边直角三角形 有一个内角是钝角的三角形,钝角三角形 有两条边相等的三角形,叫做等腰三角形,相等的两条边叫腰,另一条边叫做底,两腰的夹角叫做顶点,,底边上的两个角叫做底角等腰三角形 两条直角边相等的直角三角形,叫等腰直角三角形.等腰直角三角形

182 浏览4508 2017-10-02

什么叫互相垂直?什么叫平行线?

互相垂直,是指一条线与另一条线成直角,这两条直线互相垂直。通常用符号“⊥”表示。几何中,在同一平面内,永不相交(也永不重合)的两条直线(line)叫做平行线(parallel lines)。 一、相互垂直: 设有两个向量a和b,a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0 。 在几何学和三角学中,直角,又称正角,是角度为90度的角。它相对于四分之一个圆周(即四分之一个圆形),而两个直角便等于一个半角(180°)。角度比直角小的称为锐角,比直角大而比平角小的称为钝角。 一个直角等于90度,符号:Rt∠。 二、平行线: 平行线是公理几何中的重要概念。欧氏几何的平行公理,可以等价的陈述为“过直线外一点有唯一的一条直线和已知直线平行”。而其否定形式“过直线外一点没有和已知直线平行的直线”或“过直线外一点至少有两条直线和已知直线平行”,则可以作为欧氏几何平行公理的替代,而演绎出独立于欧氏几何的非欧几何。 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

解析几何,求解

解析几何是指借用坐标系利用代数方法研究集合对象的关系;立体几何是指三维欧式空间的几何的传统名称。高考一般来说就是那道立体图就是立体几何题,椭圆,双曲线这类就是解析几何!其实立体几何相对比较容易,一般要求拿满分,解析后面几问相对较难,不作太大要求!其实立体几何题可以说解题方法是千篇一律的,最简单就是建立一个坐标系就可以做出来了!如何建立最好的坐标系就要看你平常有没有做相关的练习题。而解析几何第一问很简单,一般是求方程,但是后面几问相对较难,但是后面那些回答其实也会有类似的题!!我说的是大题。

关于高考几何体用的到的定理帮忙整理一下.比如三角形的垂心定理,重心定理等,还有其他图形的。 在线等、

高中数学解析几何运算,很多同学突破不了,然而解析几何的题对高考的占比又很大。老师在这里总结一些解题技巧。

高中数学解析几何解题方法我们先来分析一下解析几何高考的命题趋势:

(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,占总分值的20%左右。

(2)整体平衡,重点突出:其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既留意全面,更留意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近几年新教材高考对解析几何内容的考查主要集中在如下几个类型:

① 求曲线方程(类型确定、类型未定);

②直线与圆锥曲线的交点题目(含切线题目);

③与曲线有关的最(极)值题目;

④与曲线有关的几何证实(对称性或求对称曲线、平行、垂直);

⑤探求曲线方程中几何量及参数间的数目特征;

(3)能力立意,渗透数学思想:一些虽是常见的基本题型,但假如借助于数形结合的思想,就能快速正确的得到答案。

(4)题型新奇,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。

在近年高考中,对直线与圆内容的考查主要分两部分:

(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:

①与本章概念(倾斜角、斜率、夹角、间隔、平行与垂直、线性规划等)有关的题目;

②对痴光目(包括关于点对称,关于直线对称)要熟记解法;

③与圆的位置有关的题目,其常规方法是研究圆心到直线的间隔.

以及其他“标准件”类型的基础题。

(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。

预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。

相比较而言,圆锥曲线内容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题和一道解答题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,直线与圆锥的位置关系等,从近十年高考试题看大致有以下三类:

(1)考查圆锥曲线的概念与性质;

(2)求曲线方程和求轨迹;

(3)关于直线与圆及圆锥曲线的位置关系的题目.

选择题主要以椭圆、双曲线为考查对象,填空题以抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,高考一般不给出图形,以考查学生的想象能力、分析题目的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现.解析几何的解答题一般为困难,近两年都考查了解析几何的基本方法——坐标法以及二次曲线性质的运用的命题趋向要引起我们的重视.

请同学们留意圆锥曲线的定义在解题中的应用,留意解析几何所研究的题目背景平面几何的一些性质.从近两年的试题看,解析几何题有前移的趋势,这就要求考生在基本概念、基本方法、基本技能上多下功夫.参数方程是研究曲线的辅助工具.高考试题中,涉及较多的是参数方程与普通方程互化及等价变换的数学思想方法。

考查的重点要落在轨迹方程、直线与圆锥曲线的位置关系,往往是通过直线与圆锥曲线方程的联立、消元,借助于韦达定理代人、向量搭桥建立等量关系。考查题型涉及的知识点题目有求曲线方程题目、参数的取值范围题目、最值题目、定值题目、直线过定点题目、对痴光目等,所以我们要把握这些题目的基本解法。

命题特别留意对思维严密性的考查,解题时需要留意考虑以下几个题目:

1、设曲线方程时看清焦点在哪条坐标轴上;留意方程待定形式及参数方程的使用。

2、直线的斜率存在与不存在、斜率为零,相交题目留意“D”的影响等。

3、命题结论给出的方式:搞清题目所给的几个小题是并列关系还是递进关系。假如前后小题各自有强化条件,则为并列关系,前面小题结论后面小题不能用;不过考题经常给出的是递进关系,有(1)、第一问求曲线方程、第二问讨论直线和圆锥曲线的位置关系,(2)第一问求离心率、第二问结合圆锥曲线性质求曲线方程,(3)探索型题目等。解题时要根据不同情况考虑施加不同的解答技巧。

4、题目条件如与向量知识结合,也要留意向量的给出形式:

(1)、直接反映图形位置关系和性质的,如?=0,=( ),λ,以及过三角形“四心”的向量表达式等;

(2)、=λ:假如已知M的坐标,按向量展开;假如未知M的坐标,按定比分点公式代进表示M点坐标。

(3)、若题目条件由多个向量表达式给出,则考虑其图形特征(数形结合)。

5、考虑圆锥曲线的第一定义、第二定义的区别使用,留意圆锥曲线的性质的应用。

6、留意数形结合,特别留意图形反映的平面几何性质。

7、解析几何题的另一个考查的重点就是学生的基本运算能力,所以解析几何考题学生普遍感觉较难对付。为此我们有必要在平常的解题变形的过程中,发现积累一些式子的常用变形技巧,如假分式的分离技巧,对痴规换的技巧,构造对称式用韦达定理代进的技巧,构造均值不等式的变形技巧等,以便提升解题速度。

8、平面解析几何与平面向量都具有数与形结合的特征,所以这两者多有结合,在它们的知识点交汇处命题,也是高考命题的一大亮点.直线与圆锥曲线的位置关系题目是常考常新、经久不衰的一个考查重点,另外,圆锥曲线中参数的取值范围题目、最值题目、定值题目、对痴光目等综合性题目也是高考的常考题型.解析几何题一般来说计算量较大且有一定的技巧性,需要“精打细算”,近几年解析几何题目的难度有所降低,但还是一个综合性较强的题目,对考生的意志品质和数学机智都是一种考验,是高考试题中区分度较大的一个题目,有可能作为今年高考的一个压轴题出现.

例1已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.

(1)若△POM的面积为,求向量与的夹角。

(2)试证实直线PQ恒过一个定点。

高考命题虽说千变万化,但只要找出相应的一些规律,我们就大胆地猜想高考解答题命题的一些思路和趋势,指导我们后面的温习。对待高考,我们应该采取正确的态度,再大胆猜测的同时,更要注重基础知识的进一步巩固,多做一些简单的综合练习,进步自己的解题能力.

一、高考温习建议:

本章内容是高考重点考查的内容,在每年的高考考试卷中占总分的15%左釉冬分值一直保持稳定,一般有2-3道客观题和一道解答题。选择题、填空题不仅重视基础知识和基本方法,而且具有一定的灵活性与综合性,难度以中档题居多,解答题注重考生对基本方法,数学思想的理解、把握和灵活运用,综合性强,难度较大,常作为把关题或压轴题,其重点是直线与圆锥曲线的位置关系,求曲线方程,关于圆锥曲线的最值题目。考查数形结合、等价转换、分类讨论、函数与方程、逻辑推理诸方面的能力,对思维能力、思维方法的要求较高。

近几年,解析几何考查的热门有以下几个

――求曲线方程或点的轨迹

――求参数的取值范围

――求值域或最值

――直线与圆锥曲线的位置关系

以上几个题目往往是相互交叉的,例如求轨迹方程时就要考虑参数的范围,而参数范围题目或者最值题目,又要结合直线与圆锥曲线关系进行。

总结近几年的高考试题,温习时应留意以下题目:

1、重点把握椭圆、双曲线、抛物线的定义或性质

这是由于椭圆、双曲线、抛物线的定义和性质是本章的基石,高考所考的题目都要涉及到这些内容,要善于多角度、多层次不断巩固强化三基,努力促进知识的深化、升华。

2、重视求曲线的方程或曲线的轨迹

曲线的方程或轨迹题目往往是高考解答题的命题对象,而且难度较大,所以要把握求曲线的方程或曲线的轨迹的一般方法:定义法、直接法、待定系数法、代进法(中间变量法)、相关点法等,还应留意与向量、三角等知知趣结合。

3、加强直线与圆锥曲线的位置关系题目的温习

由于直线与圆锥曲线的位置关系一直为高考的热门,这类题目常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直题目,因此分析题目时利用数形结合思想和设而不求法与弦长公式及韦达定理联系往解决题目,这样就加强了对数学各种能力的考查,其中着力抓好“运算关”,增强抽象运算与变形能力。解析几何的解题思路轻易分析出来,往往由于运算不过关中途而废,在学习过程中,应当通过解题,寻求公道运算方案,以及简化运算的基本途径和方法,亲身经历运算困难的发生与克服困难的完整过程,增强解决复杂题目的信心。

4、重视对数学思想、方法进行回纳提炼,达到优化解题思路,简化解题过程的目的。

用好方程思想。解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长题目利用韦达定理进行整体处理,就可简化解题运算量。

用好函数思想,把握坐标法。

二、知识梳理

●求曲线方程或点的轨迹

求曲线的轨迹方程是解析几何的基本题目之一,是高考中的一个热门和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生的创新意识为突破口,注重考查学生的逻辑思维能力、运算能力、分析题目和解决题目的能力,而轨迹方程这一热门,则能很好地反映学生在这些方面能力的把握程度。

下面先容几种常用的方法

(1) 直接法:动点满足的几何条件本身就是一些几何量的等量关系,我们只需把这种关系“翻译”成含x、粉底液哪个牌子好y的等式就得到曲线轨迹方程。

(2) 定义法:其动点的轨迹符合某一基本轨迹的定义,则可根据定义直接求出动点的轨迹方程。

(3) 几何法:若所求的轨迹满足某些几何性质(如线段中垂线、角平分线性质等),可以用几何法,列出几何式,再代进点的坐标较简单。

(4) 相关点法(代进法):有些题目中,某动点满足的条件不便用等式列出,但动点是随着另一动点(称为相关点)而运动的,假如相关点所满足的条件是明显的,这时我们可以用动点坐标表示相关点坐标,再把相关点代进其所满足的方程,即可求得动点的轨迹方程。

(5) 参数法:有时求动点应满足的几何条件不易得出,也无明显的相关点,但却较易发现这个动点的运动经常受到另一个变量(角度、斜率、比值、截距)等的制约,即动点坐标(x、y)中的x、y分别随另一变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种方法叫参数法。消往参数,即可得到轨迹普通方程。选定参变量要特别留意它的取值范围对动点坐标取值范围的影响。

(6) 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹题目,这类题目常通过解方程组得出交点(含参数)的坐标,再消往参数求出所求轨迹方程,该法经常与参数法并用。

●求参数范围题目

在解析几何题目中,常用到参数来刻划点和曲线的运动和变化,对于参变量范围的讨论,则需要用到变与不变的相互转化,需要用函数和变量往思考,因此要用函数和方程的思想作指导,利用已知变量的取值范围以及方程的根的状况求出参数的取值范围。

例1、已知椭圆C: 试确定m的范围,使得对于直线l: y = 4x+m 椭圆上有不同的两点关于直线 l 对称。

例2、已知双曲线的中心在原点,右顶点为A(1,0),点P、Q在双曲线的右支上,点M (m , 0 ) 到直线AP的间隔为1,

(1)若直线AP的斜率为k ,且 ,求实数 m 的取值范围

(2)当 时,ΔAPQ的内心恰好是点M,求此双曲线的方程

●值域和最值题目

与解析几何有关的函数的值域或弦长、面积等的最大值、最小值题目是解析几何与函数的综合题目,需要以函数为工具来处理。

解析几何中的最值题目,一般是根据条件列出所求目标――函数的关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法,应用不等式的性质,以及三角函数最值法等求出它的最大值或最小值。另外,还可借助图形,利用数形结正当求最值。

例1、如图,已知抛物线 y2 = 4x 的顶点为O,点A 的坐标为(5,0),倾斜角为π/4的直线 l 与线段OA相交(不过O点或A点),且交抛物线于M、N两点,求△AMN面积最大时直线的方程,并求△AMN的最大面积。

●直线与圆锥曲线关系题目

1、直线与圆锥曲线的位置关系题目,从代数角度转化为一个方程组实解个数研究(如能数形结合,可借助图形的几何性质则较为简便)。即判定直线与圆锥曲线C的位置关系时,可将直线方程带进曲线C的方程,消往y(有时消往x更方便),得到一个关于x的一元方程 ax2 + bx + c = 0

当a=0时,这是一个一次方程,若方程有解,则 l 与C相交,此时只有一个公共点。若C为双曲线,则 l 平行与双曲线的渐进线;若C为抛物线,则 l 平行与抛物线的对称轴。所以当直线与双曲线、抛物线只有一个公共点时,直线和双曲线、抛物线可能相交,也可能相切。

当 a≠0 时,若Δ>0 l与C相交

Δ=0 l与C相切

Δ<0 l与C相离

2、涉及圆锥曲线的弦长,一般用弦长公式结合韦达定理求解。

解决弦中点有两种常用办法:一是利用韦达定理及中点坐标公式;二是利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系(点差法)

中点弦题目就是当直线与圆锥曲线相交时,得到一条显冬进一步研究弦的中点的题目. 中点弦题目是解析几何中的重点和热门题目,在高考试题中经常出现. 解决圆锥曲线的中点弦题目,“点差法”是一个行之有效的方法,“点差法”顾名思义是代点作差的办法. 其步骤可扼要地叙述为:①设出弦的两个端点的坐标;②将端点的坐标代进圆锥曲线方程相减;③得到弦的中点坐标与所在直线的斜率的关系,从而求出直线的方程;④ 作简

要的检验. 本文试图通过对一道高考试题解法的探讨,谈点个人见解.

一、高考试题

椭圆C: + = 1(a> b > 0)的两个焦点为F1,F2,点P在椭圆C上,且PF1⊥F1F2,|PF1|=, |PF2| = .

(1) 求椭圆C的方程;

(2) 若直线l过圆x2 + y2 + 4x - 2y = 0 的圆心M,交椭圆C于A,B两点,窃读,B关于点M对称,求直线l的方程.

二、解题思路

第(1)题的解法不再赘述,答案是:+ = 1,在此基础上研究第(2)题的解法.

1. 运用方程组的思路

设A(x1,y1),B(x2,y2),已知圆的方程为(x + 2)2 + (y - 1)2 = 5,所以圆心M的坐标为(-2,1),从而可设直线l的方程为:y= k(x+ 2)+1.

∴y= k(x+ 2)+ 1,+=1.消y得

(4 + 9k2)x2 + (36k2 + 18k)x + 36k2 + 36k - 27 = 0.

∵ A,B关于点M对称,

∴ = - = -2,解得 k =.

∴ 直线l的方程为:8x - 9y + 25 = 0.

2. 运用“点差法”的思路

已知圆的方程为(x+ 2)2+ (y- 1)2= 5,所以圆心M的坐标为(-2,1).

设A(x1,y1),B(x2,y2),由题意x1≠x2且

+ = 1(1)+= 1(2)

由(1)- (2)得

+ = 0(3)

由于A,B关于点M对称,所以x1 + x2 = -4,y1 + y2 = 2,代进(3)得 k1 = =,所以,直线l的方程为:8x - 9y + 25 = 0. 经检验,所求直线方程符合题意.

三、对两种思路的熟悉

思路1运算较复杂,尤其是消元得到方程这一步,很多学生是不能顺利过关的;思路2运算较简洁,学生易把握. 对于两种思路都必须分析到:直线l经过圆心,而且圆心是弦的中点. 这些方法在考题中经常有所涉及.

四、对“点差法”的思考

1. “点差法”使用条件的反思

“点差法”使用起来较为简洁,那么使用“点差法”的条件是什么?

假设一条直线与曲线mx2 + ny2 = 1(n,m是不为零的常数,且不同时为负数)相交于A,B两点,设A(x1,x2),B(x2,y2),则mx12 + ny12= 1,mx22 + ny22 = 1, 两式相减有:m(x1 - x2)(x1 + x2) = -n(y1 - y2)(y1 + y2). 其中x1+x2与y1 + y2和线段AB的中点坐标有关; 为AB的斜率. 由此可见,知道其中一个可以求出另外一个,意思是说:要用“点差法”,需知道AB的中点和AB的斜率之一才可求另一个. 然后进行扼要的检验.

2. 先容一种处理中点弦题目时的巧妙的独到的解法

例题 已知双曲线x2 - = 1,问是否存在直线l,使得M(1,1)为直线l被双曲线所截弦AB的中点.若存在,求出直线l的方程;若不存在,请说明理由.

由题意得M(1,1)为显读B的中点,可设A(1+ s,1+ t),B(1- s,1- t),(s,t∈T订,由于A,B,M不重合可知, s,t不全为零. 又点A,B在双曲线x2-= 1上,将点的坐标代进方程得

(1+ s)2-= 1(1)(1- s)2-= 1(2)

(1)+ (2) 可得s2= t2 (3)

(1)- (2) 可得t = 2s (4)

将(4)代进(3)可得s= 0,t= 0,不可能,故不存在这样的直线.

这里我们回纳一下解题思路:

已知直线l与圆锥曲线:ax2 + by2 = 1(a,b使得方程为圆锥曲线)相交于A,B两点,设中点为M(m,n),求直线l方程.

解题思路 设A(m+ s,n+ t),B(m - s,n - t), (s,t∈T订,由于A,B,M不重合可知,s,t不全为零. 又点A,B在双曲线ax2 + by2 = 1上,将点的坐标代进方程得a(m + s)2- b(n+ t)2= 1, a(m-s)2 - b(n- t)2= 1.解得:ams = bnt,am2 +s2 = bn2 + t2. (由于这里全是字母运算,表达式复杂,不再求出所有的表达式的具体形式,只是谈一下思路)进一步解出s,t的值,从而知道A,B的坐标,运用两点式求出直线l的方程。

湖南高考数学知识点总结

立体几何中的公理、定理和常用结论

一、定理

1.公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.

若A∈l,B∈l,A∈a,B∈a,则l?a.

2.公理2 如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过

这个公共点的一条直线.

P∈a,P∈a?a∩b=l,且P∈l.

3.公理3 经过不在同一条直线上的三点,有且只有一个平面.

推论1 经过一条直线和这条直线外的一点,有且只有一个平面.

推论2 经过两条相交直线,有且只有一个平面.

推论3 经过两条平行直线,有且只有一个平面.

4.异面直线的判定定理:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.(若a?α,A∈(/)α,B∈α,B∈(/)a,则直线AB和直线a是异面直线.)

5.公理4(空间平行线的传递性):平行于同一条直线的两条直线互相平行.

6.等角定理:如果一个角的两边和另一角的两边分别平行并且方向相同,那么这两个角相等.

7.定理:如果一条直线垂直于两条平行线中的一条直线,那么它也垂直于另一条直线.

若b∥c,a⊥b,则a⊥c.

8.直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.

若a/a,b?a,a∥b,则a∥a.

9.直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.

若a∥a,a?β,a?β=b,则a∥b.

10.直线与平面垂直的判定定理:如果一条直线和平面内的两条相交直线垂直,这条直线和这个平面垂直.

若m?α,n?α,m?n=O,l⊥m,l⊥n,则l⊥α.

11.:若两条平行直线中的一条垂直于一个平面,那么另一条直线也和这个平面垂直.

若a∥b,a⊥α,则b⊥α.

12.直线与平面垂直的性质定理:若两条直线同时垂直于一个平面,那么这两条直线平行.

若a⊥α,b⊥α,则a∥b.

13.平面与平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

若a?a,b?a,a?b=A,a∥b,b∥b,则a∥b.

14.平面与平面平行的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.

若a∥b,a∩γ=a,b∩γ=b,则a∥b.

15.定理:如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.

若α∥β,a⊥α,则a⊥β.

16.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.

若l⊥a,l?b,则a⊥b.

17.两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.

若a⊥b,a∩b=l,a?a,a⊥l,则a⊥b.

18.两个平面垂直的性质定理:如果两个平面互相垂直,那么过一个平面内一点且垂直于第二个平面的直线在第一个平面内.

二、常识

1.过空间一点,与已知平面垂直的直线有且只有一条.

2.过空间一点,与已知直线垂直的平面有且只有一个.

3.经过平面外一点有且只有一个平面和已知平面平行.

4.空间四点A、B、C、D,若直线AB与CD异面,则AC与BD,AD与BC也一定异面.

5.夹在两个平行平面间的平行线段相等.

6.经过两条异面直线中的一条,有且只有一个平面与另一条直线平行.

7.若直线a同时平行于两个相交平面,则a一定也平行于这两个相交平面的交线.

8.如果一条直线垂直于一个三角形的两边,那么它也垂直于第三边.

9.正方体的体对角线和它不相邻的面对角线垂直

10.平行于同一平面的两个平面平行.

11.垂直于同一个平面的两直线平行,垂直于同一直线的两平面平行

12.空间四面体A-BCD中,若有两对对棱互相垂直,则第三对对棱也互相垂直,且顶点A在平面BCD内的射影是△BCD的垂心(类似地,顶点B在平面ACD内的射影是ΔACD的垂心,…).

13.空间四面体P-ABC中,若PA、PB、PC两两垂直,则

①点P在平面ABC内的射影是ΔABC的垂心;

②△ABC的垂心O也是点P在平面ABC内的射影(PO⊥平面ABC).

14.空间四面体P-ABC中,

①若PA=PB=PC,则点P在平面ABC内的射影是△ABC的外心.

②若三个侧面上的斜高PH1=PH2=PH3,则点P在平面ABC内的射影是△ABC的内心.

15.如果两个平面同时垂直于第三个平面,那么这两个平面的交线垂直于第三个平面.

若a⊥b,P∈a,P∈a,a⊥b,则a?a.

高中立体几何梳理(看完立几无难题!!!)

基本概念

公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3: 过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面

1、按是否共面可分为两类:

(1)共面: 平行、 相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为 ( 0°,90° ) esp.空间向量法

两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法

2、若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;(2)没有公共点—— 平行或异面

直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)

规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角

由此得直线和平面所成角的取值范围为 [0°,90°]

最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角

三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直

esp.直线和平面垂直

直线和平面垂直的定义:如果一条直线a和一个平面 内的任意一条直线都垂直,我们就说直线a和平面 互相垂直.直线a叫做平面 的垂线,平面 叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

③直线和平面平行——没有公共点

直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

两个平面的位置关系:

(1)两个平面互相平行的定义:空间两平面没有公共点

(2)两个平面的位置关系:

两个平面平行-----没有公共点; 两个平面相交-----有一条公共直线。

a、平行

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交

二面角

(1) 半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2) 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为 [0°,180°]

(3) 二面角的棱:这一条直线叫做二面角的棱。

(4) 二面角的面:这两个半平面叫做二面角的面。

(5) 二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6) 直二面角:平面角是直角的二面角叫做直二面角。

esp. 两平面垂直

两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为 ⊥

两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

Attention:

二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)

多面体

棱柱

棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质

(1)侧棱都相等,侧面是平行四边形

(2)两个底面与平行于底面的截面是全等的多边形

(3)过不相邻的两条侧棱的截面(对角面)是平行四边形

棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

棱锥的性质:

(1) 侧棱交于一点。侧面都是三角形

(2) 平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3) 多个特殊的直角三角形

esp: a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

Attention:

1、 注意建立空间直角坐标系

2、 空间向量也可在无坐标系的情况下应用

多面体欧拉公式:V(角)+F(面)-E(棱)=2

正多面体只有五种:正四、六、八、十二、二十面体。

attention:

1、 球与球面积的区别

2、 经度(面面角)与纬度(线面角)

3、 球的表面积及体积公式

4、 球内两平行平面间距离的多解性

 考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。下面是我为大家整理的高考数学知识点,希望对大家有所帮助!

 高考文科数学考点总结

 第一,函式与导数。主要考查 *** 运算、函式的有关概念定义域、值域、解析式、函式的极限、连续、导数。

 第二,平面向量与三角函式、三角变换及其应用。这一部分是高考微博的重点但不是难点,主要出一些基础题或中档题。

 第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

 第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

 第五,概率和统计。这部分和我们的生活联络比较大,属应用题。

 第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

 第七,解析几何。是高考的难点,运算量大,一般含引数。

 湖南高考文科数学考点一:直线方程

 1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.

 注:①当或时,直线垂直于轴,它的斜率不存在.

 ②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.

 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.

 特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.

 注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.

 附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点0,的直线束.②当为定值,变化时,它们表示一组平行直线.

 3. ⑴两条直线平行:

 ∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.

 一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且

 推论:如果两条直线的倾斜角为则∥.

 ⑵两条直线垂直:

 两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. 即是垂直的充要条件

 4. 直线的交角:

 ⑴直线到的角方向角;直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.

 ⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.

 5. 过两直线的交点的直线系方程为引数,不包括在内

  湖南高考文科数学考点二:轨迹方程

 一、求动点的轨迹方程的基本步骤

 ⒈建立适当的座标系,设出动点M的座标;

 ⒉写出点M的 *** ;

 ⒊列出方程=0;

 ⒋化简方程为最简形式;

 ⒌检验。

 二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、引数法和交轨法等。

 ⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

 ⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

 ⒊相关点法:用动点Q的座标x,y表示相关点P的座标x0、y0,然后代入点P的座标x0,y0所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

 ⒋引数法:当动点座标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做引数法。

 ⒌交轨法:将两动曲线方程中的引数消去,得到不含引数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

湖南高考文科数学考点三:导数

 一、函式的单调性

 在a,b内可导函式fx,f′x在a,b任意子区间内都不恒等于0.

 f′x≥0?fx在a,b上为增函式.

 f′x≤0?fx在a,b上为减函式.

 二、函式的极值

 1、函式的极小值:

 函式y=fx在点x=a的函式值fa比它在点x=a附近其它点的函式值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函式y=fx的极小值点,fa叫做函式y=fx的极小值.

 2、函式的极大值:

 函式y=fx在点x=b的函式值fb比它在点x=b附近的其他点的函式值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函式y=fx的极大值点,fb叫做函式y=fx的极大值.

 极小值点,极大值点统称为极值点,极大值和极小值统称为极值.

 三、函式的最值

 1、在闭区间[a,b]上连续的函式fx在[a,b]上必有最大值与最小值.

 2、若函式fx在[a,b]上单调递增,则fa为函式的最小值,fb为函式的最大值;若函式fx在[a,b]上单调递减,则fa为函式的最大值,fb为函式的最小值.

 四、求可导函式单调区间的一般步骤和方法

 1、确定函式fx的定义域;

 2、求f′x,令f′x=0,求出它在定义域内的一切实数根;

 3、把函式fx的间断点即fx的无定义点的横座标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函式fx的定义区间分成若干个小区间;

 4、确定f′x在各个开区间内的符号,根据f′x的符号判定函式fx在每个相应小开区间内的增减性.

湖南高考文科数学考点四:不等式

 1理解不等式的性质及其证明。

 导读

 不等式的性质是不等式的理论支撑,其基础性质源于数的大小比较。要注意以下几点:

 加强化归意识,把比较大小问题转化为实数的运算;

 通过复习强化不等式“运算”的条件。如a>b、才c>d在什么条件下才能推出ac>bd;

 强化函式的性质在大小比较中的重要作用,加强知识间的联络;

 不等式的性质是解、证不等式的基础,对任意两实数a、b有a-b>0 a>b,a-b=0 a=b,a-b<0 a

 一定要在理解的基础上记准、记熟不等式的性质,并注意解题中灵活、准确地加以应用;

 对两个或两个以上不等式同加或同乘时一定要注意不等式是否同向且大于零;

 对于含参问题的大小比较要注意分类讨论。

 2掌握两个不扩充套件到三个正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

 导读

 1、在证明不等式的各种方法中,作差比较法是一种最基本最重要的方法,它是利用不等式两边的差是正数还是负数来证明不等式,其应用非常广泛,一定要熟练掌握。

 2、对于公式a+b≥ 2√ab,ab≤a+b/22要理解它们的作用和使用条件及内在联络,两个公式也体现了ab和a+b的转化关系。

 3、在应用均值定理求最值时,要把握定理成立的三个条件就是“一正——各项均为正;二定——积或和为定值;三项等——等号能否取得”。若忽略了某个条件,就会出现错误。

 3掌握分析法、综合法、比较法证明的简单不等式。

 导读

 1、在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程。有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证明目的。

 2、由于高考试题不会出现单一的不等式的证明题,常常与函式、数列、三角、方程综合在一起,所以在学习中,不等式的证明除常用的三种方法外,还有其他方法,比如比较大小。证明不等式的常用方法有:差、商比较法、函式性质法、分析综合法和放缩法。要能了解常见的放缩途径,如:利用增或舍、分式性质、函式单调性、有界性、基本不等式及绝对值不等式性质和数学归纳法等。有时要先对不等式作等价变形再进行证明,有时几种证明方法综合使用。

 3、比较法有两种形式:一是作差,而是作商。用作差法证明不等式是证明不等式中最基本、最常用的方法。它的依据是不等式的基本性质。步骤是:作差商→变形→判断。变形的目的是为了判断,若是作差,就判断与0的大小关系,为了便于判断,往往把形式变为积或完全平方式。若是作商,两边为正,就判断与1的大小关系。

  湖南高考文科数学考点五:几何

 1棱柱:

 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

 2棱锥

 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

 表示:用各顶点字母,如五棱锥

 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

 3棱台:

 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

 表示:用各顶点字母,如五棱台

 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

 4圆柱:

 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

 5圆锥:

 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

 6圆台:

 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

 7球体:

 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 看过"湖南高考数学知识点 湖南高考文科数学考点 "的还: