2013年江苏数学高考试卷答案,2013江苏数学高考答案
1.2019年江苏高考数学试题第13题解答过程
2.2011江苏高考数学卷14题怎么做
3.葛军参与过哪些年份的高考数学命题?
4.2019年江苏高考数学试卷答案点评和难度解析
5.2010江苏高考数学题填空题第3,8,10,12题,详解!
2019年江苏省高考数学第9题的答案为10。
具体解法如下:
首先,本题需要运用的公式为:长方体体积V=S(底面面积)*h(高),圆锥体体积V=1/3*S(底面面积)*h(高)。
已知以上两个公式,解题时便可以运用两个公式之间的关系和题意进行解答。
其次,已知点E为CC1的中点,那么EC=1/2*CC1=1/2*h,这一步等量代换是解题的关键。接下来,继续利用等量代换思想,SBCD=1/2S(底面面积),当运用等量得出以上步骤后,再思考下一步。
接下来,已知V(圆锥)=1/3*S(BCD)*h(EC1),接下来代入上一步所求的式子,即:V(圆锥)=1/3*S(BCD)*h(EC1)=1/3*1/2*S(底面面积)*1/2*h(高)=1/12*S(底面面积)*h(高),现在已经将未知量转化为已知量了。
最后,已知S(底面面积)*h(高)=V(长方体)=120,那么1/12*S(底面面积)*h(高)=1/12*V(长方体)=1/12*120=10,这也就是本题的最终答案。
这道题的解题技巧在于等量代换将未知量变为已知量,虽然未知每个棱的棱长和底面积,但是通过总体积的量以及面积、棱长之间的等价关系,足以判断出圆锥的体积。
本题存在易马虎的点在于:圆锥体积没有乘1/3,这是很多人会犯的错误。
2019年江苏高考数学试题第13题解答过程
如果问我数学最后一题有多难,我要能答上我就是省状元。
虽然我说的是玩笑话,但并不是没有道理的。每年的高考,都会有两个拉开距离的重要环节。语文的作文拉开普通段子手和灵魂段子手的距离。数学的最后一道大题拉开普通生和尖子生的距离。
到底有多难?来让我们看一眼。
有过高考经历的都知道,要在高考数学的最后一题得分,不难;满分,巨难。因为老师说过,只要你能做条辅助线或者写一个相关的公式就给你分。倒是想要精益求精拿个满分,大概只有天才才能做到吧。毕竟通常来说最后一题就是压轴题了,是专家们“故意”用来区分你和天才的。
让我们回顾历史最难数学压轴题。史上最难高考试卷—理科数学。那一年,全国平均分26分;那一年,北京平均分17分;那一年,安徽平均分28分。为84年的考生鞠一个躬,同志们你们辛苦了。
让我们重温这份经典试卷,全国得分率21.7%的“史上最难”。
是不是看了之后,90后非常感谢父母把我们生在90年代,让我们高考在10年代。其实,我们也不用幸灾乐祸。10年代的压轴题也类似老太太的裹脚布——又臭又长。
这是一次写没有三角形的三角函数大题的体验。这也是一次写立体几何的时候居然不认识字的感受。更是一次写要用线性规划的分布列的题的憋屈。看到用椭圆规求椭圆方程的题,我想掀桌,大吼一声:出题老师,我永远忘不了你,我感谢你八辈祖宗。想哭!想哭!想哭!
怎么应对数学压轴题
在高考数学中。最后一题,光是长度都令人生畏。但是你要知道高考是知识与心理的双重测验。会做一道题;会做一道难题;明知是难题,在高度集中一个小时后,还能顶住压力做出来。这完全是三种不同的境界,做到第一种境界,你就不平凡啦!达到第二种境界,恭喜你你已经可以升仙啦!完成第三种境界,膜拜你,你就是考神。
像我们这样的学渣,在最后一道数学题面前,除了留下一个“解”字,也别无他法。但是我们只要做到能发挥好自己的应有的水平就行。毕竟能正常发挥就已经很不容易了。
不过我还是在这里,祝各位考生都是超常发挥!考上自己心仪的大学!
2011江苏高考数学卷14题怎么做
答案是-1/7
数学(mathematics或maths,其英文来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用.
具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学).
就纵度而言,在数学各自领域上的探索亦越发深入.
葛军参与过哪些年份的高考数学命题?
答案为[1/2,2+√2]
解:依题意可知集合A表示一系列圆内点的集合,集合B表示出一系列直线的集合,要使两集合不为空集,需直线与圆有交点,由可得m≤0或m≥1/2。
当m≤0时,有[(2-2m)/√2]>-m且[(2-2m-1)/√2]>_m;
则有[√2_√2m]>_m,√2/2_√2m>_m,
又由m≤0,则2>2m+1,可得A∩B=?,
当m≥1/2时,有|2-2m/√2|≤m或|2-2m-1/√2|≤m,
解可得:2-√2≤m≤2+√2,1-√2/2≤m≤1+√2/2,
又由m≥12,则m的范围是[1/2,2+√2];
综合可得m的范围是[1/2,2+√2];
故答案为[1/2,2+√2]?
2019年江苏高考数学试卷答案点评和难度解析
葛军不会出2023年高考乙卷。葛军分别在2004年、2007、2008年、2010年、2013年五个年度,参与了多地的高考数学学科的命题,而在所有有葛军参与的命题,全部都让学生叫苦不已,葛军之名,也成为了很多学生所不想听到的。
在2004年的时候,葛军参加的江苏省高考数学命题工作,江苏省满分150分的情况下,全省平均分68分,而2007年,葛军再次参加江苏省高考命题工作,这一次均分仅仅50分,很多考生都是泪洒考场。2010年,同样是江苏省,这次要比前两次稍微的好一些,平均分达到了83.5分,不过此次的满分是160分,而2013年的安徽考试,全省平均分只有55分左右,导致2013年安徽省一本的分数线大幅度的下降。高考数学:数学科命题科学调控试卷难度,坚持数学科高考的基础性、综合性、应用性和创新性的考查要求,贯彻了“低起点,多层次,高落差”的调控策略,发挥了高考数学的选拔功能和良好的导向作用。理性思维在数学素养中起着最本质、最核心的作用。数学科高考突出理性思维,将数学关键能力与“理性思维、数学应用、数学探究、数学文化”的学科素养统一在理性思维的主线上,在数学应用、数学探究等方面突出体现了理性思维和关键能力的考查。对批判性思维能力的考查。如全国Ⅰ卷理科第12题不仅考查考生运用所学知识分析、解决问题的能力,同时也考查学生的观察能力、运算能力、推理判断能力与灵活运用知识的综合能力。科学调控难度。数学科命题科学调控试卷难度,坚持数学科高考的基础性、综合性、应用性和创新性的考查要求,贯彻了“低起点,多层次,高落差”的调控策略,发挥了高考数学的选拔功能和良好的导向作用。
2010江苏高考数学题填空题第3,8,10,12题,详解!
江苏高考数学试卷答案点评和难度解析
7日下午江苏高考第二科数学考试结束。据考生反馈,今年数学的“压轴题”较难。南京市第三高级中学数学教师范书韵也表示,此次试题有一定区分度,比2013年江苏高考的数学试题要难一些。
范书韵同时指出,今年的数学试题仍然重视基础,考察了8个C级考点,知识点分布与往年一致。解答题前三题,分别考察了三角函数、立体几何、解析几何,相对比较基础、容易上手,从考生反馈的情况看,大部分考生这三题都比较容易上手。
后面的函数导数题、数列题则有一定难度,且每题三个小问之间难度依次增加,想全部答出不容易。此外,往年出现在试卷“上半场”的应用题今年移到了第18题(倒数第三题),难度也相应有所增加。
范书韵表示,今年总体难度应该说在考生心理预期的范围之内。在今年的《考试说明》中就曾明确指出,“有必要区分度和难度”,因此在复习及模拟考试中,老师和考生都做了一定准备。“总体而言,这是一份不错的试卷,整体结构平稳,设置一定区分度也有利于高校人才的选拔。”
第3题考的是古典概型很简单 答案是1/2;
第8题:因为y'=2x,所以过点(ak,ak^2)处的切线方程为y-ak^2=2ak(x-ak),又因为切线与x轴的交点为(a(k+1),0),所以a(k+1)=ak/2,即数列{an}是等比数列,首相a1=16,q=1/2,所以a3=4,a5=1.所以a1+a3+a5=21
第10题:设P(x,y),由y=6cosx y=5tanx消去y得,6cosx=5tanx =>6(cosx)^2=5sinx
=>6(sinx)^2+5sinx-6=0, =>sinx=-3/2(舍去)或2/3 因为PP1垂直于X轴,且点P,P1,P2共线
所以P1P2=sinx=2/3
第12题:将4<=x^2/y<=9两边平方得,16<=x^4/y^2<=81①,又3<=xy^2<=8 1/8<=1/xy^2<=1/3②,
由①乘②得,2<=x^3/y^4<=27,即x^3/y^4的最大值为27
希望可以帮到你·······
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。